Eileen
Stansbery on the Genesis Mission
Eileen
Stansbery on cleanrooms
View Eileen Stansbery's Resume
The following interview occurred December 15, 1998, between
Contamination Control Lead Eileen Stansbery, Johnson Space
Center, and Senior Associate Alice Krueger, Mid-continent
Regional Educational Laboratory:
A.K. What is your role on the Genesis mission?
E.S. I am the Contamination Control Lead. I am responsible
for making sure that the collector materials remain free of
contaminates during the mission. I need to know how much contamination
we can accumulate on the collector surfaces and still get
good science. That means I need to be aware not only of the
science requirements, but also the mission and hardware design.
I work with all parts of the mission, ranging from coordinating
with spacecraft and mission design to minimize contamination
to performing the final precision cleaning of the payload
and installing the clean collectors.
A.K. Would you call yourself a scientist or an engineer?
E.S. I consider myself a scientist because that's
what my educational background is. I also have a fair amount
of experience in my early college education with engineering
course work and I have worked in the engineering community
so I know how to speak their language. Actually I can be sort
of a transition person between the scientists and engineers.
A.K. What is the most fascinating thing to you about
this mission?
E.S. Personally, the most fascinating thing is the
thought that we're going to bring back solar matter to Earth.
The idea that that's possible is cool! This isn't quite like
sending a robot (or human) out to pick up rocks. We are letting
ultra clean material literally sunbathe for a couple of years
while atoms from the sun embed themselves into the material-sort
of like hiding themselves in a box. Those embedded atoms are
our sample.
A.K. What do you think is the riskiest part of the
Genesis mission?
E.S. There are two types of answers to that. One is
technically oriented while the other is more programmatic.
Getting the collector materials back clean enough to extract
the scientific information is technically challenging. A large
number of hardware and mission design issues must be properly
addressed to ensure that this happens. The other is to coordinate
all of the different institutions [JPL, LMA, LANL, JSC]. It
is difficult to get all the disparate organizations integrated
to achieve a common goal.
A.K. What will the science of space be like in 20 years?
How will this mission contribute?
E.S. Every twenty years things change so drastically
it is sort of difficult to say. If you asked people 20 years
ago, they would have probably said we would have landed on
Mars. If you had asked them 20 years prior to that, no one
would have had any idea we would have had people tromping
around on the moon. So it's hard to answer. Progress is not
in a straight line; there are usually fits and starts. These
new fast small [Discovery] missions will be bringing back
more samples from various objects around the solar system.
We will have a mature-if not dated-International Space Station.
We should be well on our way to having people on Mars, if
we have the political will to do it. By then we will have
a wide variety of samples from diverse solar bodies. In the
next 10 years we will have returned samples of solar wind,
a primitive comet, Mars, and potentially from Martian moons.
Within the next 20 years we will have a variety of samples
from diverse solar bodies-probably including satellites of
the gas planets. Genesis is able to provide the unique context
for understanding all these samples. Not only will our mission
help us understand the makeup of the solar wind, but it will
help us understand planetary processes and the evolution of
the solar system. This will give added meaning to all other
samples.
A.K. What else do you do at Johnson Space Center, besides
work on the Genesis mission?
E.S. I have several other responsibilities. I am Assistant
Chief of the Planetary Science Branch. I also do advanced
planning of Planetary Protection and Curation for the Mars
sample return missions. JSC has considerable experience with
curation of extraterrestrial samples. We have the Apollo moon
rocks, Antarctic meteorites, and cosmic dust. The issues of
proper handling of samples must be addressed in any discussions
of potential quarantine for the Mars samples. I have been
working on new ideas for meeting federal regulations for containment
of potentially hazardous materials-as the Martian samples
will probably be initially characterized. I spend about 2/3
of my time on Genesis-my largest responsibility. Everything
else gets shoved in as time allows. The Mars work is big right
now so I spend a fair amount of my time thinking about it.
I try to spend almost 100% of my work time doing technical
work. All of the other stuff you always have to do-safety,
procedures, contracts, that sort of thing-I do above my 40-60
hour work week.
A.K. You have a full work schedule. Would you describe
a typical workday?
E.S. There isn't really a typical workday for me.
I live that Chinese curse "May you live in interesting times."
With Genesis and the planning for Mars samples these are very
interesting times. The first half hour of the day I deal with
the e-mail that has arrived overnight and any phone messages
that have accumulated. Then I schedule my daily meetings and
block out technical work time. The day disintegrates after
that! I'd like to say that "Chaos reigns, and when it rains
it pours." The technical work requires focus, but it's the
fun part and I am less likely to procrastinate with it. I
have to force myself to attend to what might be classified
as bureaucratic overhead.
A.K. What kind of career path and education led you
to become a scientist? Were there any barriers to your career
and education?
E.S. I was always pretty good in math. I was a good
solid student, but never the best at any one thing. I didn't
know what I wanted to do as a young child. As a result, my
education did not proceed in a straight line toward a single
goal. Since I enjoyed math and chemistry and respected my
high school chemistry teacher, I followed her advice to try
chemical engineering in college. I ended up taking the introductory
class for every engineering discipline. But it wasn't a good
match for me. The engineering class work was results oriented
and not question oriented. So I dropped out and worked for
a couple of years. When I went back to college I knew I was
interested in questions-how things work and why they work
that way in particular. I had sort of a philosophical bent
of science, not the nuts and bolts of engineering. My mentors
encouraged me to go back to school and stay in school.
A.K. Could you tell us more about your mentors? Who
were they and how did they help you?
E.S. After I dropped out of school, my boss encouraged
me to go back to college. He suggested trying a smaller college.
I had been going to a mega-university with lots of students
in each class. I was accepted at a smaller liberal arts college
with more one-on-one time with the professor and smaller classes.
There I was put in touch with a scientist at JSC for my required
Senior Research Project. He decided to sponsor me and even
wrote a recommendation letter to graduate school. I don't
think he is disappointed in how I turned out. Now his office
is next door to mine! We kept in touch occasionally while
I was in grad school. When I was looking for postgraduate
work, I started in an engineering position at JSC and touched
base with him. We found out we had similar views on what we
should do for human exploration beyond low Earth orbit. We
both worked to get NASA to begin looking at more creative
missions beyond the Space Shuttle and the Space Station.
A.K. What has been the most surprising thing about
your education and career history?
E.S. This surprises other people as well as me. I
am not a stereotypical scientist. I look different. I am not
male; I don't wear a white lab coat and most of the time I
don't look like a geek. That's the stereotype I grew up with.
When I was growing up, I thought I'd end up being a high school
teacher. That was my role model for bright competent women-or
a nun or a nurse. I am probably my own biggest barrier. I
never really saw myself as being extraordinarily competent.
In graduate school I wasn't sure I'd survive the process to
completion. There is a pass/fail on any of the major steps
you go through. If you fail, they tactfully request you to
leave. I barely passed my comprehensive oral exams-the first
major test in grad school. When I took my masters' orals,
I fully expected to receive a terminal Masters, and I even
had a job lined up. But they allowed me to go on to the Ph.D.
They kept passing me. And here I am. When I was young I didn't
see women in professional career fields other than teaching,
nursing, or some level of clergy. I had a limited view. It
still sometimes surprises me that I have gotten where I am.
A.K. What is your family life like? What do you do
for fun?
E.S. I have the world's best husband. Sometimes I
need someone to encourage me, and his role in our family is
the encourager. He encourages me on fun stuff, and he is the
idea man. We spend a lot of our time and energy flying. My
husband actually suggested I learn to fly. I think he enjoys
my enjoyment of flying as much as he enjoys flying. Our plane
is a Chinese military trainer called a Nanchang CJ-6A.* That
type of plane is currently in use as the trainer for the People's
Republic of China Air Force. My husband also encouraged me
to learn aerobatic flying, and to qualify to do air show formation
flying. Now he flies to the air show, I fly in the air show,
and he flies back. Formation flying is an order of magnitude
better than a runner's high. There is an adrenaline rush.
You need intense concentration, and you have to be very focused.
When you are flying 5 feet from the wingtip of another airplane
and you are both going at 160 mph, well. That allows me
to let everything else go. I also thoroughly enjoy the camaraderie
and hanger flying with other women pilots and taking friends
up for "joyrides." One close friend started out as an enthusiastic
flying companion and I've encouraged her to learn to fly herself.
A.K. Any advice for young scientists and engineers?
E.S. A lot of people ask this question, and I have
seen many answers talking about choosing something you want
to do. While that is true, I haven't seen many people mention
before the importance of hard work and persistence. Some people
think that they must not be good at something if they have
to work hard for it. They wouldn't call it work if you didn't
have to. Don't get discouraged at the first sign of difficulty.
Just be persistent and keep working. Working hard is worth
doing. Since it will take hard work, that's why you should
pick something you like to do.
Read more interviews
with Genesis team members that tell you about their lives,
their jobs, and about the important role they play in the
Genesis mission.
Find out more about Careers
in Aerospace. |