Enceladus’ Gravity Field
From Cassini Radio Science

Sami Asmar & Aseel Anabtawi

M. Parisi(1), L. Iess(1), D.J. Stevenson(2), D. Hemingway(3), R.A. Jacobson(4), J.I Lunine(5), F. Nimmo(3), J.W. Armstrong(4), S.W. Asmar(4), M. Ducci(1), P. Tortora(6)

A. Anabtawi, E. Barbinis, D. Buccino, D. Kahan

(1) DIMA, Sapienza Università di Roma, Via Eudossiana 18, 00184 Rome, Italy
(2) California Institute of Technology
(3) Dept. Earth and Planetary Sciences, University of California Santa Cruz
(4) Jet Propulsion Laboratory, California Institute of Technology
(5) Department of Astronomy, Cornell University, Ithaca
(6) Dipartimento di Ingegneria Industriale, Università di Bologna, Forlì, Italy.
Radio Science Investigations

- Utilize the telecommunication links between spacecraft and Earth to examine changes in the phase/frequency, amplitude, and polarization of radio signals to investigate:
 - Planetary atmospheres
 - Temperature-pressure profiles
 - Composition of ionospheres
 - Winds speeds and directions
 - Scintillations & magnetic fields
 - Planetary shapes
 - Planetary interiors
 - Masses and mass distribution
 - Precision orbits
 - Planetary rings
 - Planetary surfaces
 - Solar corona and wind
 - Comet mass flux and particle distribution
 - Fundamental Physics
Gravity and Planetary Interiors

- Determine the mass and mass distribution
 - GM of body or system (planet + satellites)
 - Gravity field: higher order expansion of mass distribution
- Constrain models of internal structure
 - Examples: ocean on Europa
- Improve orbits and ephemerides
- Doppler and range
 - Doppler accuracy to $\sim 0.01\text{mm/s}$ at X-band and better at Ka-band
 - Ranging accuracy to ~ 1 meter
Doppler Measurement of Gravity Perturbations

Line-of-sight velocity
Gravitational Potential

\[U = \frac{GM}{r} + GM \sum_{n=1}^{\infty} \sum_{m=0}^{n} \left(\frac{R_e}{r} \right)^{n} P_{nm} \left(\sin \phi_{lat} \right) \left[\bar{C}_{nm} \cos(m\lambda) + \bar{S}_{nm} \sin(m\lambda) \right] \]

Normalization of Spherical Harmonic Coefficients:

\[
\begin{align*}
\left(\frac{C_{nm}}{S_{nm}} \right) & = \left[\frac{(n-m)!(2n+1)(2-\delta_{0m})}{(n+m)!} \right]^{1/2} \left(\frac{\bar{C}_{nm}}{\bar{S}_{nm}} \right) = f_{nm} \left(\frac{\bar{C}_{nm}}{\bar{S}_{nm}} \right)
\end{align*}
\]
FLOW DIAGRAM FOR GRAVITY DATA REDUCTION

Raw Data in Cycle Counts from DSN

Data Conditioning Team
Makes Doppler at Specific Sample, Hz = 0

Time Tag on Data

Gravity User Inputs
Amount of Data
Data Weighting
Parameters to Estimate = q
Apriori Sigmas
Elevation Constraint

Gravity Inputs
Estimate of Spacecraft Position + Velocity and Model Parameters

Trajectory Program for Precision Integration of Orbit (1.5 million lines of code)

Calculation of Theoretical Data = C

Difference
O – C = Z ≠ 0

Least Square Filter
\[\Delta q = (A^T w A)^{-1} A^T wz \]

q_{new} = q_{old} + \Delta q

\[\frac{\partial \text{Doppler}}{\partial \text{Parameter}} = A \]

Partials

\[\Delta q = \text{very small} \]

Trajectory Models
- Planet Ephemeris
- Earth Rotation
- Polar Motion
- Nutation
- Precession
- Tides
- Atmospheres
- Station Locations
- Spacecraft Attitude
- Relativity
- Solar Pressure
- Gravity Harmonics
- Momentum Dumps
- Maneuvers
- Planetary Constants
- GM's of Bodies
- Reference Frame J2000, EME50

Estimated Parameters
- Spacecraft State 6
- Atmosphere (Density on Each Orbit) 24
- Momentum 12
- Dump \Delta V
- Solar Pressure 3
- Data Biases 5
- Gravity Harmonics 6,000
Enceladus: facts

- Sixth largest moon of Saturn
- Orbit semi-major axis $\approx 240,000$ km
- Orbit velocity (average) ≈ 12.6 km/s
- Orbit eccentricity ≈ 0.005
- Orbit inclination $\approx 0.01^\circ$
- Mean radius ≈ 252 km
- Mean density ≈ 1.61 g/cm3
- Water vapor jets from the south pole discovered in 2005
Tidal Forces: Titan
Enceladus: gravity flybys characteristics

<table>
<thead>
<tr>
<th></th>
<th>E9</th>
<th>E12</th>
<th>E19</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/A:</td>
<td>APR-28-2010 00:10:51 UTC</td>
<td>NOV-30-2010 11:53:59 UTC</td>
<td>2-MAY-2012 09:31:29 UTC</td>
</tr>
<tr>
<td>Altitude:</td>
<td>100 km</td>
<td>48 km</td>
<td>70 km</td>
</tr>
<tr>
<td>C/A latitude:</td>
<td>-89°</td>
<td>62°</td>
<td>-72°</td>
</tr>
<tr>
<td>SEP angle:</td>
<td>141°</td>
<td>54°</td>
<td>162°</td>
</tr>
<tr>
<td>Observation time:</td>
<td>-> 7h continuous tracking around C/A: 2-way Doppler data only</td>
<td>-> 3h continuous tracking around C/A: 3-way tracking data at C/A</td>
<td>-> 3h continuous tracking around C/A: 3-way tracking data at C/A</td>
</tr>
<tr>
<td>Relative velocity:</td>
<td>6.5 km/s</td>
<td>6.3 km/s</td>
<td>7.5 km/s</td>
</tr>
</tbody>
</table>
Measurement sensitivity: gravitational accelerations

Monopole: \(\delta V^{(0)} \approx \frac{GM}{rV} \)

Degree-2: \(\delta V^{(2)} \approx \frac{GM}{rV} \left(\frac{R}{r} \right)^2 J_2 \)

Degree-3: \(\delta V^{(3)} \approx \frac{GM}{rV} \left(\frac{R}{r} \right)^3 J_3 \)

<table>
<thead>
<tr>
<th>(\delta V^{(0)}) (km/s)</th>
<th>E9</th>
<th>E12</th>
<th>E19</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta V^{(2)}) (km/s)</td>
<td>3.2 x 10^{-3}</td>
<td>3.9 x 10^{-3}</td>
<td>3.0 x 10^{-3}</td>
</tr>
<tr>
<td>(\delta V^{(3)}) (km/s)</td>
<td>9.0 x 10^{-6}</td>
<td>15.0 x 10^{-6}</td>
<td>10.0 x 10^{-6}</td>
</tr>
<tr>
<td>(\delta V^{(0)}) (km/s)</td>
<td>2.0 x 10^{-7}</td>
<td>3.0 x 10^{-7}</td>
<td>2.0 x 10^{-7}</td>
</tr>
</tbody>
</table>
Measurement sensitivity: Enceladus’ plume

The velocity variations caused by the atmospheric drag can be predicted using different models of Enceladus’ plume density profile (red boxes: Tenishev, DPS 2012; yellow boxes: Dong et al. 2011)

<table>
<thead>
<tr>
<th>Model</th>
<th>Density</th>
<th>Velocity Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E9</td>
<td>(\rho_M = 3.78 \times 10^{-12} \text{ kg/m}^3)</td>
<td>(\Delta V \approx \frac{1}{2} \left(\frac{\rho_M}{m_C} \right) A C_D V^2 \Delta t = 0.27 \text{ mm/s})</td>
</tr>
<tr>
<td></td>
<td>(\Delta V \leq 0.27 \text{ mm/s} \leq \Delta V \leq 1.5 \text{ mm/s})</td>
<td>(\Delta V = 1.03 \times 10^{-11} \text{ kg/m}^3)</td>
</tr>
<tr>
<td>E19</td>
<td>(\rho_M = 6.46 \times 10^{-13} \text{ kg/m}^3)</td>
<td>(\Delta V \approx \frac{1}{2} \left(\frac{\rho_M}{m_C} \right) A C_D V^2 \Delta t = 0.06 \text{ mm/s})</td>
</tr>
<tr>
<td></td>
<td>(\Delta V \leq 0.06 \text{ mm/s} \leq \Delta V \leq 0.48 \text{ mm/s})</td>
<td>(\rho_M = 4.85 \times 10^{-12} \text{ kg/m}^3)</td>
</tr>
</tbody>
</table>

\(m_C \) is the mass of the particle, and \(A \) is the cross-sectional area of the particle.
Cassini Radio Science Subsystem

Two-way and three-way Doppler using X-X and X-Ka radio links. Data accuracy ~ 0.02 – 0.04 mm/s at 60 s.
Multiarc solution with Monte–Doppler residuals (X/X and X/Ka) @ 60 sec

E9 – April 2010
RMS = 28 µm/s

E12 – November 2010
RMS = 27 µm/s

E19 – May 2012
RMS = 37 µm/s
Multiarc solution for global parameters

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Central value ($\times 10^6$)</th>
<th>Formal uncertainty ($\times 10^6$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_2</td>
<td>5435.2</td>
<td>34.9</td>
</tr>
<tr>
<td>C_{21}</td>
<td>9.2</td>
<td>11.6</td>
</tr>
<tr>
<td>S_{21}</td>
<td>39.8</td>
<td>22.4</td>
</tr>
<tr>
<td>C_{22}</td>
<td>1549.8</td>
<td>15.6</td>
</tr>
<tr>
<td>S_{22}</td>
<td>22.6</td>
<td>7.4</td>
</tr>
<tr>
<td>J_3</td>
<td>-115.3</td>
<td>22.9</td>
</tr>
<tr>
<td>ΔV (E9)</td>
<td>0.25 mm/s (92% in the direction of $-V$)</td>
<td></td>
</tr>
<tr>
<td>ΔV (E19)</td>
<td>0.26 mm/s (91% in the direction of $-V$)</td>
<td></td>
</tr>
<tr>
<td>J_2/C_{22}</td>
<td>3.51 \pm 0.05</td>
<td></td>
</tr>
</tbody>
</table>
Estimated gravity field of Enceladus indicates:

- predominance of the quadrupole terms J_2 and C_{22} (as expected)
- existence of a remarkable asymmetry between northern and southern hemispheres
- mild deviation of the body from hydrostatic equilibrium ($\sim 6\%$), the non-hydrostatic contributions might be small because of compensation
- small non degree-2 contributions ($J_3 \sim 0.02 J_2$)
- MOI of about 0.335-0.336 MR2 compatible with a low core density of ~ 2.4 g/cm3 and a H$_2$O mantle of density 1 g/cm3 and 60 km thickness
Gravity anomalies: values and uncertainties
We inferred the presence of a liquid water reservoir at depth in the proximity of the south pole, based on a number of considerations:

- the estimated gravity anomaly is not large enough to explain the 1.2 km depression at the south pole
- this region dominance in the heat output
- the plumes activity
- the need for decoupling of the ice shell and tidal heating
Gravity measurements: interpretation (2)

Additional information concerning the ocean characteristics can be extrapolated:

- A liquid water layer (8% denser than ice) of 10 km thickness at depth would explain the observed gravity.
- The regional ocean is likely to extend out to about 50° south latitude.
- The moon is too small to have an internal energy source capable of melting the ice; tides must be the main heat source.
- The water ocean is directly in contact with the rocky core.
Conclusions

- A very fitting interpretation of Cassini gravity measurements is the presence of a regional liquid water ocean underneath the icy crust of Enceladus at the south pole.
- The water pocket functions as a tank that supplies the jets made of water-ice particles.
- A potentially habitable environment has been found in an unexpected place of the solar system, where the energy needed to produce liquid water from ice is not provided by solar radiation.
- The greater concentration of water beneath the surface at the south pole, inferred from our gravity data, fits with our understanding if how Enceladus can be active.