Skip Navigation: Avoid going through Home page links and jump straight to content
NASA Logo - Jet Propulsion Laboratory    + View the NASA Portal
Search Stardust  
JPL Home Earth Solar System Stars & Galaxies Technology
Stardust Banner
Overview Mission Science Technology Newsroom Education Gallery Links Stardust Home
 
Weekly Status
Press Releases
Press Kits
Newsletters
Stardust in the News
Team Biographies
Media Contacts


MEDIA RELATIONS OFFICE
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
PASADENA, CALIF. 91109.  TELEPHONE (818) 354-5011
http://www.jpl.nasa.gov

Contact:  Franklin O'Donnell

FOR IMMEDIATE RELEASE                         February 3, 1999

STARDUST MISSION SET TO BRING BACK A PIECE OF A COMET

NASA's Stardust mission, scheduled for launch Saturday, February 6, from Cape Canaveral, FL, will send a spacecraft flying through the cloud of dust that surrounds the nucleus of a comet - and, for the first time ever, bring cometary material back to Earth.

Launch is scheduled at 4:06 p.m. Eastern time, with live coverage on NASA Television beginning at 2:30 p.m. Eastern. A post-launch briefing is planned to be broadcast on NASA Television at 6 p.m. Eastern.

Comets, which periodically grace our sky like celestial bottle rockets, are thought to hold many of the original ingredients of the recipe that created the planets and brought plentiful water to Earth. They are also rich in organic material, which provided our planet with many of the ready-to-mix molecules that could give rise to life. They may be the oldest, most primitive bodies in the solar system, a preserved record of the original nebula that formed the Sun and the planets.

"Scientists have long sought a sample directly from a known comet because of the unique chemical and physical information these bodies contain about the earliest history of the solar system," said Dr. Edward Weiler, NASA's associate administrator for space science. "Locked within comet molecules and atoms could be the record of the formation of the planets and the materials from which they were made."

Stardust is the first U.S. mission dedicated solely to a comet and will be the first to return extraterrestrial material from outside the orbit of the Moon. Stardust's main objective is to capture a sample from a well-preserved comet called Wild-2 (pronounced "Vilt-2").

The spacecraft will also collect interstellar dust from a recently discovered flow of particles that passes through our solar system from interstellar space. As in the proverbial "from dust to dust," this interstellar dust represents the ultimate in recycled material; it is the stuff from which all solid objects in the universe are made, and the state to which everything eventually returns. Scientists want to discover the composition of this "stardust" to determine the history, chemistry, physics and mineralogy of nature's most fundamental building blocks.

Because it would be virtually impossible to equip a spacecraft with the most sophisticated lab instrumentation needed to analyze such material in space, the Stardust spacecraft is more of a robotic lab assistant whose job it is pick up and deliver a sample to scientists back on Earth. The spacecraft will, however, radio some on-the-spot analytical observations of the comet and interstellar dust.

"The samples we will collect are extremely small, less than a micron, or 1/25,000th of an inch, in size, and can only be adequately studied in laboratories with sophisticated analytical instruments," said Dr. Donald C. Brownlee of the University of Washington, principal investigator for the Stardust mission.

"Even if a ton of sample were returned, the main information in the solids would still be recorded at the micron level, and the analyses would still be done a single grain at a time."

Stardust will meet up with Comet Wild-2 on January 2, 2004. A gravity assist flyby of Earth will put Stardust on a trajectory that will allow it to capture cometary dust intact at a low relative speed of 6.1 kilometers per second (about 13,600 miles per hour). An onboard camera will aid in navigating the spacecraft as close as about 150 kilometers (100 miles) from the comet's nucleus, permitting the capture of the freshest samples from the heart of the comet.

Dressed for survival behind armored shields, Stardust will document its 10-hour passage through the hailstorm of comet debris with scientific instruments and the navigation camera. On approach to the dust cloud, or "coma," the spacecraft will flip open a tennis-racket-shaped particle catcher filled with a smoke- colored glass foam called aerogel to capture the comet particles. Aerogel, the lowest-density material in the world, has enough "give" in it to slow and stop particles without altering them too much. After the sample has been collected, the aerogel capturing device will fold down into a return capsule, which closes like a clamshell to enclose the sample for its safe delivery to Earth.

In addition, a particle impact mass spectrometer will obtain in-flight data on the composition of both cometary and interstellar dust, especially very fine particles. The optical navigation camera should provide excellent images of the dark mass of the comet's nucleus. Other equipment will reveal the distribution in both time and space of coma dust, and could give an estimate of the comet's mass.

On January 15, 2006, a parachute will set the capsule gently onto the salt flats of the Utah desert for retrieval. The scientifically precious samples can be studied for decades into the future with ever-improving techniques and analysis technologies, limited only by the number of atoms and molecules of the sample material available. Many types of analyses now performed on lunar samples, for example, were not even conceived at the time of the Apollo missions to the Moon.

Comets are small, irregularly shaped bodies composed of a mixture of grains of rock, organic molecules and frozen gases. Most comets are about 50 percent water ice. Typically ranging in size up to about 10 kilometers (6 miles) in diameter, comets have highly elliptical orbits that bring them close to the Sun and then swing them back out into deep space. They spend most of their existences in a deep freeze beyond the orbit of Pluto - far beyond the Sun's dwindling influence, which is why so much of their original material is well-preserved. Comet Wild-2 is considered an ideal target for study because, until recently, it was a long-period comet that rarely ventured close to the Sun. A fateful pass near Jupiter and its enormous gravity field in 1974 pulled Comet Wild-2 off-course, diverting it onto a tighter orbit that brings it past the Sun more frequently and also closer to Earth's neighborhood. Because Wild-2 has only recently changed its orbit, it has lost little of its original material when compared with other short-period comets, so it offers some of the best-preserved comet samples that can be obtained.

Stardust was competitively selected in the fall of 1995 under NASA's Discovery Program of low-cost, highly focused science missions. As a Discovery mission, Stardust has met a fast development schedule, uses a small Delta launch vehicle, is cost-capped at less than $200 million, and is the product of a partnership involving NASA, academia and industry.

Principal investigator Brownlee is well-known for his discovery of cosmic particles in Earth's stratosphere known as Brownlee particles. Dr. Peter Tsou of NASA's Jet Propulsion Laboratory, Pasadena, CA, an innovator in aerogel technology and maker of aerogel, serves as deputy investigator. JPL, a division of the California Institute of Technology, manages the Stardust mission for NASA's Office of Space Science, Washington, DC. Dr. Kenneth L. Atkins of JPL is project manager. The spacecraft is designed, built and operated by Lockheed Martin Astronautics, Denver, CO. JPL provided the spacecraft's optical navigation camera, and the Max Planck Institute of Germany provided the real-time dust composition analyzer.

NASA Television is broadcast on the satellite GE-2, transponder 9C, C band, 85 degrees west longitude, frequency 3880.0 MHz, vertical polarization, audio monaural at 6.8 MHz.



Last Updated: November 26, 2003
 
     
 
Privacy F.A.Q. Contact Sitemap Credit
 
FIRST GOV + Freedom of Information Act
+ The President's Management Agenda
+ FY 2002 Agency Performance and accountability report
+ NASA Privacy Statement, Disclaimer, and Accessiblity Certification
+ Freedom to Manage
NASA Home Page Site Manager:
Aimee Whalen

Webmaster:
Ron Baalke

http://www.jpl.nasa.gov http://www.nasa.gov http://www.caltech.edu/