FOR IMMEDIATE RELEASE
FROM: Vince Stricherz
University of Washington
206-543-2580
vinces@u.washington.edu
DATE: June 29, 1998
February launch planned for UW mission to collect samples of comet dust
It might sound like something from a
popular science fiction movie, but a
University of Washington astronomy
professor's nearly two-decade dream of
launching an unmanned spacecraft to collect
interstellar dust from a comet is close to
coming true.
Stardust will blast off from Cape
Canaveral, Fla., in February. It will be
the fourth mission in NASA's Discovery
series, which captured public imagination a
year ago with Mars Pathfinder. It will be
the first US mission since Apollo to return
samples of space material to Earth for
analysis.
UW professor Donald Brownlee, the principal investigator for the project,
expects to find clues about the formation of the solar system and perhaps
the universe itself.
"We hope to understand how comets were formed and what they're made of," he
said. "We expect them to be the preserved building blocks of the outer
planets."
Brownlee began considering such a mission in 1980. The idea was explored
seriously five years later when Halley's comet approached Earth, but it was
deemed unworkable then.
For Stardust's 7-year, 3.1-billion-mile journey, solar panels will power the
spacecraft to encounter Wild 2, a comet that altered course in 1974 after a
close encounter with Jupiter. Now instead of circling among the outer
planets in our solar system, Wild 2 (pronounced vihlt 2) travels among the
inner planets. It was discovered in 1978 during its first close approach to
Earth.
Wild 2's recent arrival to the planetary neighborhood makes the $200 million
Stardust mission possible. In 2004, the craft will pass about 75 miles from
the main body of the comet. That's close enough to trap small particles from
the comet's coma, the gas-and-dust envelope surrounding the nucleus. A
camera built for NASA's Voyager program will transmit
close-up comet pictures back to Earth. Though the encounter will last about
12 hours, Brownlee says the really intense activity will be over in a matter
of minutes.
The collection system will extend from the spacecraft and trap particles as
they collide with it. To prevent damaging or altering the particles - each
smaller than a grain of sand and traveling as much as nine times the speed
of a bullet fired from a rifle - the collector uses a unique substance
called aerogel. Often called "frozen smoke," aerogel is a transparent blue
silica-based solid that is as much as 99.9 percent air. It is as smooth as
glass, something like plastic foam without the lumps. A block the size of a
person weighs less than a pound but can support the weight of a small car.
On the trip to Wild 2, the aerogel-equipped collection panel will be
deployed to trap interstellar particles traveling in space. During the
encounter with the comet, some 242 million miles from Earth, the opposite
side of the panel will gather bits of comet dust. Trapped particles will
leave a telltale trail through the aerogel that scientists will follow to
find the grains and extract them. Upon leaving the comet, the collection
panel will retract into its capsule.
Once the Stardust capsule parchutes into Utah's Great Salt Desert in 2006,
the particles it collects will go to Johnson Space Center in Houston and
then be parceled out to various research facilities, including the
University of Washington. Because comets are about equal parts ice and dust,
Brownlee believes the particles will be cryogenically preserved interstellar
dust left from the birth of the solar system some 4.6 billion years ago.
Such grains can be found only in the outer solar system, he believes,
because heat has destroyed them nearer the Sun.
Brownlee's previous work collecting cosmic dust particles led to their being
named Brownlee particles. Cosmic dust was brought back to Earth on Gemini
missions in the 1960s. Later, high-flying U2 planes and balloons gathered
particles from different levels in the atmosphere, and space dust even has
been collected from the ocean floor. "A comet mission is the logical
extension," Brownlee said.
The project is being carried out by a consortium that includes the Jet
Propulsion Laboratory and Lockheed Martin Astronautics. When it came to
picking a name, Brownlee said, it just seemed appropriate to select
"Stardust," the title Hoagy Carmichael put on a popular tune that since has
been recorded by numerous artists, including Willie Nelson and Ringo Starr.
"I liked it because most spacecraft missions had weird, bizarre names. They
were acronyms for something," he said. "This isn't an acronym for anything.
It's just a name that people know."
FOR IMMEDIATE RELEASE
FROM: Vince Stricherz
University of Washington
206-543-2580
vinces@u.washington.edu
DATE: June 17, 1998
"Send Your Name to a Comet" effort proves very popular
Hundreds of thousands of people will get a vicarious thrill tracking the
progress of the Stardust mission to comet Wild 2 in the next seven years,
knowing their names are inscribed on a microchip that is going along for the
ride.
In fact, NASA collected 130,000 names for one microchip already loaded on
the Stardust spacecraft, and more than 200,000 names have been placed on a
second. The names are etched electronically on a chip the size of a
fingernail, with writing so small that 80 letters will fit into the width of
a human hair and an electron microscope is needed to read them.
University of Washington Astronomy Professor Donald Brownlee, the father of
the Stardust mission, said plans are to place the chips in a museum when the
spacecraft returns to Earth in early 2006. He hopes they will go to the
Smithsonian Institution.
The drive to gather names for the mission has gotten new emphasis with the
recent release of the movie Deep Impact, a science-fiction thriller about a
comet colliding with Earth, and the imminent release of "Armageddon," about
an asteroid colliding with Earth. Paramount Studios and and the DreamWorks
SKG, which collaborated on "Deep Impact," are promoting the gathering of
names.
The only way to submit a name for inclusion on a chip is through Stardust's
web page, http://stardust.jpl.nasa.gov. Submitting a name automatically