Mitri and colleagues fed data from Cassini's radar instrument into computer models of Titan developed to describe the moon's tectonic processes and to study the interior structure and evolution of icy satellites. They also made the assumption that the moon's interior was only partially separated into a mixture of rock and ice, as suggested by data from Cassini's radio science team.

Scientists tweaked the model until they were able to build mountains on the surface similar to those Cassini had seen. They found the conditions were met when they assumed the deep interior was surrounded by a very dense layer of high-pressure water ice, then a subsurface liquid-water-and-ammonia ocean and an outer water-ice shell. So the model, Mitri explained, also supports the existence of a subsurface ocean.

Each successive layer of Titan's interior is colder than the one just inside it, with the outermost surface averaging a chilly 94 Kelvin (minus 290 degrees Fahrenheit). So cooling of the moon causes a partial freezing of the subsurface liquid ocean and thickening of the outer water ice shell. It also thickens the high-pressure ice. Because the ice on the crust is less dense than the liquid ocean and the liquid ocean is less dense than the high-pressure ice, the cooling means the interior layers lose volume and the top "skin" of ice puckers and folds.

Since the formation of Titan, which scientists believe occurred around four billion years ago, the moon's interior has cooled significantly. But the moon is still releasing hundreds of gigawatts of power, some of which may be available for geologic activity. The result, according to the model, was a shortening of the radius of the moon by about seven kilometers (four miles) and a decrease in volume of about one percent.

"These results suggest that Titan's geologic history has been different from that of its Jovian cousins, thanks, perhaps, to an interior ocean of water and ammonia," said Jonathan Lunine, a Cassini interdisciplinary scientist for Titan and co-author on the new paper. Lunine is currently based at the University of Rome, Tor Vergata, Italy. "As Cassini continues to map Titan, we will learn more about the extent and height of mountains across its diverse surface."

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL manages the Cassini-Huygens mission for NASA's Science Mission Directorate. The Cassini orbiter was designed, developed and assembled at JPL. The radar instrument was built by JPL and the Italian Space Agency, working with team members from the United States and several European countries. JPL is a division of the California Institute of Technology in Pasadena.

More Cassini information is available, at http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini.


Jia-Rui C. Cook 818-354-0850
Jet Propulsion Laboratory, Pasadena, Calif.
jia-rui.c.cook@jpl.nasa.gov

You Might Also Like