STUDENT ACTIVITY

BACKGROUND

A cross-section of the mirror grid in the Genesis solar wind concentrator is a parabola. A parabola is a curve consisting of all points equidistant from a line called the directrix and a point called the focus. One way to determine the equation of a parabola is to use the distance formula. In this mathematics enrichment activity, students determine the equation for a parabola and graph the parabola using measurement similar to that of the Genesis concentrator.

MATERIALS

- Graph paper
- Paper, pencil
- Pipe cleaners and/or clay

- Calculator (optional)

PROCEDURE

1. The distance between two points can be determined by using the distance formula. If P_{1} is $\left(x_{1}, y_{1}\right)$ and P_{2} is $\left(x_{2}, y_{2}\right)$ then the distance between them is :

$$
\text { Distance between } P_{1} \text { and } P_{2}=\quad d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

2. Suppose the focus of the concentrator is located at $F(0,20)$, the directrix is $y=-20, P(x, y)$ is any point on the parabola, and $D(x,-20)$ is where the perpendicular line joining the directrix and point P intersect the directrix. Find the equation of the parabola.
3. Using the equation fill in a T chart.
4. Using this information graph the parabola.
5. Using pipe cleaners make a model of the parabolic curve. Make the model three-dimensional by using three pipe cleaners bent to the shape of the parabola. (Join them at the vertex.)
6. Use clay to make a three-dimensional model of the paraboloid.

EXTENSION

With an understanding of calculus you may:

1. Find the area under the curve.
2. Find the surface area of part of the paraboloid.
3. Find the volume of part of the paraboloid.
