National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
Facebook Twitter YouTube Facebook Twitter YouTube Flickr iTunes
Follow Us
Science Questions

How did the Sun's family of planets and minor bodies originate?
Pluto and its moons Charon, Hydra and Nix appear as bright spots when photographed from a great distance.
Pluto and its moons Charon, Hydra and Nix.
Scientists have a solid understanding of how planets are formed, but it the actual ingredients and conditions that resulted in the creation of our solar system remain unclear. This makes the Kuiper Belt - the vast region of icy-rocky bodies beyond Neptune - a prime target for exploration. Pluto is the best known object in the Kuiper Belt. This region of our solar system is also believe to be the birthplace of short-period comets - such as comet Halley - that pass through the inner solar system.

Meteorites and asteroids also are time capsules that preserve information about the chemical and physical processes that operated at microscopic to planetary scales in the early solar system. Earth's geologic history has been mostly obliterated by tectonic activity. But the Moon's South Pole Aitken Basin, one of the largest known impact structures, retains some of the earliest records of the formation of the Earth-Moon system. Additional evidence and different perspectives may exist in the highlands of Mars and Venus.

The four gas giant planets - especially Jupiter - played a major role in shaping our solar system. Critical clues to giant planet formation can be found in the structure and masses of their rock-ice cores, and in the composition of their deep atmospheres and interiors. Scientists have targeted Jupiter and Saturn as critical areas of exploration, but Neptune and Uranus also can provide crucial information.

NASA has developed a comprehensive plan to explore these diverse science targets with a series of planetary spacecraft that will each contribute key pieces to the larger puzzle.

How did the solar system evolve to its current diverse state?
Color image showing the solar panels and robotic arm of the Phoenix lander in front of the rocky red surface of Mars.
NASA's Mars Phoenix lander used a robotic arm to investigates the water history of Mars.
Our solar system is exceedingly dynamic. Virtually everywhere we look we find continual change - predictable or chaotic, physical or chemical, subtle or catastrophic. Planetary processes such as impacts, volcanism, tectonics, climate change, and greenhouse-gas warming are difficult to comprehend when their study is confined to just one body - Earth, for example - but by comparing how these processes operate and interact in a variety of planetary settings, we can gain insight into their variations and effects.

For example, Earth's magnetic field, generated by processes in its molten core, shields the planet from the damaging solar wind. Recent evidence suggests Mars may have once had a similar protective magnetic field. At Jupiter, Io's tidal flexing drives volcanoes which feed deadly radiation into Jupiter's magnetosphere while a similar effect on nearby Europa may keep an ocean from freezing, making the small moon a prime candidate for the discovery of life beyond Earth.

Impacts may have delivered the key ingredients for life on Earth
- and caused devastating extinctions. Studies of impact cratering on a wide variety of bodies - from Earth's Moon to Pluto and beyond - will tell a story of planetary evolution that has long since been erased here on Earth.

Comparative studies also will help to reveal why Earth teems with life while Mars and Venus - which formed about the same time under similar conditions - are so radically different. Understanding the evolutionary pathways of Earth's planetary neighbors is a critical step in forecasting the future habitability of our home world. This knowledge will also help guide the search for habitable worlds in other solar systems.

What are the hazards and resources in the solar system environment that will affect the extension of human presence in space?
Our home planet is continuously bombarded by energetic particles, cosmic rays, dust and occasionally larger objects, all of which are hazards to human life. These hazards become even more severe for future human and robotic explorers that will move beyond the shielding provided by Earth's atmosphere and magnetic field.

Once a source of life-giving organics and water, cosmic impacts also have the potential to wreak widespread destruction or even to extinguish much of life - and these events occur regularly on planetary timescales. Evidence continues to mount that the so-called Cretaceous-Tertiary mass extinction event 65 million years ago was caused by the impact of an extraterrestrial body about 10 km in diameter. Even much smaller objects, which impact Earth much more frequently, are capable of doing serious damage.

Permanent human habitation of space requires knowledge of the resources available from Earth's Moon, Mars and asteroids and access to those resources. Water may be the fuel that allows humans ready access to the solar system. It is essential for life support, but it also is particularly useful because its constituents, hydrogen and oxygen, can be used for rocket fuel. Water is essential for permanent settlements on Earth's Moon and Mars.

Space pioneers will also need metals, ores and other materials to build and maintain infrastructure that will be difficult and costly to haul from Earth.

Additional Reading::
NASA 2006 Solar System Exploration Roadmap

Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writers: Courtney O'Connor and Bill Dunford
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> NASA Advisory Council
> Open Government at NASA
Last Updated: 9 Jun 2010