Marco Polo
An Asteroid Sample Returns to Earth

Lisa Peacocke
International Planetary Probe Workshop – 17th June 2010
Outline

- The Mission
- The Spacecraft
- The Earth Re-Entry Capsule
The Mission
Asteroids

- Extremely primitive bodies – “fossils”
 - Leftover from the formation of the solar system
 - History and processes of solar system/planetary formation
- Future resource utilisation
 - NASA flexible path plan
- Earth impact threat
 - Structure and composition must be understood before a deflection attempt can be made
- Currently of great interest to scientists
Marco Polo Science Case

- Candidate mission for ESA’s Cosmic Vision
 - 12 month assessment study led by Astrium
- Aim to obtain a sample of asteroid surface material and return it safely to Earth
- Fundamental questions:
 - What were the properties of the building blocks of the terrestrial planets?
 - What are the organics in primitive materials?
 - What is the role of impacts by NEOs in the origin and evolution on Earth?
- Significant step in our understanding of the solar system
Mission Requirements

- Obtain a sample of 30-100g asteroid regolith
 - Preferably from 5-10 cm below the surface
 - Some pebbles highly desired
- In-situ science instruments
 - Narrow, wide angle and close-up cameras
 - Radio science experiment, Vis/Near-IR and Mid-IR spectrometers, laser altimeter and neutral particle analyser
- Launch in 2017-2018
 - Soyuz launcher preferred, max mission duration of 8 years
- Many mission architectures studied (>50)
 - Single landing spacecraft with chemical propulsion selected
 - Earth Re-entry Capsule (ERC) attached to landing spacecraft
 - Lowest cost and mass mission with low risk implementation
Asteroid Target

- 1999 JU3 selected as target after detailed analysis
 - Very primitive class of asteroid (C-class)
 - Low delta-V required – minimum of 2599 m/s

- Physical properties:
 - Small diameter of 780 m and mass of 3×10^{11} kg
 - Very low gravitational environment
 - Fast rotation period of 7.7 hours
 - Eccentric orbit: Perihelion = 0.9 AU, Aphelion = 1.42 AU
 - Maximum temperature at perihelion = 399 K

- Highly challenging environment for a spacecraft to visit!
Mission Design
The Spacecraft
Spacecraft Reference Design

- 3-axis controlled landing spacecraft
 - Can land on any illuminated side of the asteroid
 - Hexagonal structure with radial shear walls
 - Two folding solar arrays
 - Three landing legs absorb impact energy
 - Steerable high gain antenna and medium gain antenna
 - ERC located in top centre

- 4 m wide spacecraft
 - Short and squat
 - Low CoG
Spacecraft Reference Design

- Central cylinder
 - Based on LISA Pathfinder
 - Robot arm and sampling mechanism stowed here

- Two hexagonal floors attached
 - Lower floor: propulsion system, landing gear, landing sensors
 - Upper floor: remote sensing payload and avionics
 - Allows parallel integration and test of mechanical platform and avionics ‘flatsat’
Landing Legs

- Plastic buckling selected to absorb impact energy
 - Unidirectional carbon/glass fibre tubes with crushable R31 cell material inside
 - Piston tube with circular landing pad guided within tube
 - Crushable material will crush up to 10 cm on each landing attempt absorbing impact energy

Landing gear attachment points to spacecraft

initial position

after 3 touchdowns

All the space you need
Sampling Mechanism

- Rotating corer mechanism
 - Attached to end of robot arm
 - Located in central cylinder
 - Can obtain sample up to 89 cm3
 - Closure doors over end to retain sample
 - Mandrel (tool drive) provides rotation
 - Breakable sensing wires verify sample

- Robotic arm transfers sample
 - 3 DOF and 3 rotational joints
 - Clip mechanism seals sample within container
 - ERC closure lid protects sample
Sample Transfer
Spacecraft Mass

- **Overall composite spacecraft mass:**
 - Wet mass = 1408 kg
 - Dry mass = 745 kg

- Margin of 13% achieved with Soyuz launcher

- Additional 20% system margin on top of this
The Earth Re-entry Capsule
ERC Design Drivers

- **Main design drivers:**
 - Hayabusa-type design preferred by ESA
 - Re-entry velocity of 12.1 km/s
 - Mass of 20-30 kg
 - Diameter of 500-600 mm
 - Sample container volume allocation of 100 mm diameter and 200 mm length
 - Maximum g-loads to the sample of 200g (25 Hz) & 800g (100 Hz)
 - Provide a recovery time of ~ 5 days

- **RadFlight-like aeroshape selected**
 - Stability and extensive aerodynamic database available
 - Favourable volume-to-size ratio
ERC Reference Design

- Half-cone angle of 45°
- Homothetic nose radius of 180 mm
- Diameter of 600 mm
- Mass = 26.3 kg
ERC Reference Design

- **Thermal Protection System**
 - ASTERM for frontshield
 - Norcoat liege for back cover
 - High density TPS on door
- **Aluminium structure**
- **Two parachutes**
 - Pilot and main
- **Pyro nut separation mechanism**
- **Dampers to attenuate shocks**
- **Crushable material (TBD)**
 - Attenuate landing impacts
- **Equipments:**
 - Battery, beacon, accelerometer, central electronics unit

All the space you need
Re-entry Trajectory Assessment

- Maximum heat flux to ERC = 18 MW/m²
 - Includes 100% margin for radiation and 20% for convection
 - 50 mm thick TPS required on heatshield

- At 120 km altitude and 12.1 km/s re-entry velocity:
 - Heading angle must be 115° W/SW and latitude 30° S
 - FPA driven by peak heat flux and g-load
 - Sizing FPA range of -8.7° to -7.7°

- Analysis of heat flux experienced:
 - Frontshield ~ 17 MW/m²
 - Back cover ~ 1.5 MW/m²
 - Total energy = 330 MJ/m² at stagnation point
 - Re-entry duration = 1100 seconds
Re-entry Stability Assessment

- ERC jettisoned with 2 rpm spin
 - Angle of attack set at 9°
- ERC is stable during supersonic phase (M > 3)
- Unstable when M < 1.4
 - Angle of attack divergence of 18° amplitude
 - Dynamic instability of capsule

=> Supersonic pilot chute necessary for stabilisation
 - CoG should also be moved forward with ballast

All the space you need
Descent Sequence

- Two-stage parachute system necessary for deceleration and stabilisation
 - 0.8 m diameter pilot chute (Disk-Gap-Band) deployed at M = 1.4
 - After timed 500s, pilot chute pulls off back cover
 - 5.3 m diameter subsonic parachute then deployed (~ 3km altitude)
 - Deployed late to minimise landing ellipse
 - Total mass = 4 kg including mortars
- Vertical speed at impact is 5 m/s
Summary
Summary

- **Marco Polo Assessment Study successful**
 - Resulted in an innovative and efficient mission design
 - Launch margin of 13%

- **Design and analysis of the ERC shows two-stage parachute is necessary for stability and impact load requirements**
 - Descent would protect the pristine asteroid sample

- **Marco Polo not down-selected by ESA at this stage but still highly desired by scientists**
Questions