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ABSTRACT 

 

Mars is considered a planet where balloon exploration 

is feasible.  Due to the relatively thin atmosphere, 

however, balloons generally need to fly at low 

altitudes.  This presents a problem, because Mars has 

extreme topography, a good portion of which is not 

navigable by a balloon.  Using output from GCM and 

mesoscale models, we show that a careful choice of 

probe insertion location can maximize the longevity of 

a superpressure (constant density) balloon.  At the 

same time, improper selection can result in a very short 

mission lifetime.   

 

1. INTRODUCTION 

 

Trajectory analyses of a constant-density, 

superpressure balloon are performed at a variety of 

density altitudes near Ls=165.  Knowledge of balloon 

flight path will be critical to establishing the 

probability of achieving science goals.  Balloons that 

impact the elevated surfaces of Mars in a short period 

of time will prematurely terminate science return and 

could fail to achieve floor longevity requirements.   

 

The methodology used to establish trajectories is first 

described.  Then, the results from trajectory analyses 

computed at Ls=165 (which corresponds to the most 

energetically favorable orbit transfer in the 2013 

launch window) are presented.   

 

2. METHODOLOGY 

2.1  Displacement Equation 

 

The balloon trajectory is computed by integrating the 

balloon velocity with respect to time to obtain 

displacement: 
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where 



r  is the position vector, and 



V  is the horizontal 

balloon velocity.  A super-pressure balloon flies along 

an isopycnal (constant density) surface, and thus Eq. 

(1) is evaluated on a specified constant density surface. 

 

The balloon velocity is taken to be equivalent to the 

atmospheric velocity.  The validity of this assumption 

is evaluated by considering the horizontal equation of 

motion for the balloon and the atmosphere: 
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where f is the coriolis parameter, p is the atmospheric 

pressure, subscript a refers to the atmosphere, and the 

dynamic force on the balloon is modeled by the last 

term of Eq. (2) using an adjustment time scale of 



 .  

The adjustment time scale is on the order of a minute, 

and represents the characteristic time it takes for the 

balloon to attain a speed of 1 m/s when starting from 

rest in an atmosphere moving at 1 m/s.  Note that the 

density of the balloon is taken as the density of the 

atmosphere by definition for a neutrally buoyant 

system. 

 

An order of magnitude analysis of the accelerations in 

Eq (2) are in order.  If the balloon speed is different 

than the wind speed by 1 m/s, the acceleration due to 

the last term is on the order of 0.01 ms
-2

.  In the 

subtropics, where gradient wind dominates, the first 

two terms on the r.h.s of Eq. (2) are nearly in balance, 

with a typical residual of less than 10%.  Using a 

typical winds speed of 20 m/s and latitude of 45
o
, the 

coriolis term produces an acceleration of order 5x10
-5

.  

Therefore, the last term in Eq. (2) is orders of 

magnitude larger than the other accelerations and their 

residuals.  In short, the balloon will very quickly adjust 

to the atmospheric velocity when outside the tropics. 

 

Within the tropics, the coriolis torque is negligible.  In 

the atmosphere, the winds in the tropics are dominated 

by irrotational motions that develop in response to the 

pressure gradient.  On the large-scale, some of the 

strongest horizontal pressure gradients in the Martian 

tropics result from the thermal tide.  On smaller scales, 

thermal circulations resulting from topography can also 

produce strong pressure gradients.  A pressure gradient 

of order 1000 Pa/km (assuming an atmospheric density 

of order 10
-2

 kg m
-3

 would be required to rival the 

adjustment acceleration, which is not realistic.  

Therefore, even in the tropics, the balloon will adjust 



very quickly to the atmospheric wind regardless of the 

other forces, and the assumption that the balloon 

velocity is equivalent to the wind velocity is valid as 

long as the environment wind changes over timescales 

much more slowly than the adjustment time scale. 

 

In some cases, particularly in the convective and 

turbulent daytime planetary boundary layer (PBL), it is 

possible to imagine that the environment velocity 

would change faster than the balloon could adjust.  The 

proper representation of balloon behavior in this 

environment would require complex aerodynamic 

modeling of the balloon, which is beyond the scope of 

this work.  However, in addition to balloon trajectory 

considerations in such an environment, the possibility 

for excitement of unwanted pendulum oscillations in 

the balloon-gondola system are recognized. The Mars 

Exploration rovers were susceptible to similar 

oscillations. Any balloon system encountering the 

Mars PBL should consider the entire range of balloon 

system behavior. 

 

2.2 General Circulation Model Description 

 

Having shown that the balloon velocity may be taken 

as the atmospheric velocity in most cases, the 

integration of Eq. (1) still requires knowledge of the 

winds.  The atmospheric state is taken from a 

simulation conducted with the Ames Mars General 

Circulation Model (MGCM) version 1.7.3.  The 

particular simulation uses a 5x6 degree latitude by 

longitude domain and is forced by a variable dust 

opacity description.  Dust is varied in time and latitude 

in such a way that it matches the zonally averaged dust 

opacity retrieved by the Thermal Emission 

Spectrometer in Mars Global Surveyor mapping year 

one. 

 

Topography is derived from Mars Orbiter Laser 

Altimeter (MOLA) data re-binned to 5x6 degrees and 

filtered with a 9-point smoother.  As shown in Fig. 1, 

the model captures the essence of the true Mars 

topography, although the high montes of Tharsis and 

elsewhere are understated, and the Tharsis plateau is 

generally broader and higher than reality.  The height 

of the Tharsis bulge in the MGCM is, therefore, a 

conservative lower boundary.  The highest peaks are 

not of concern for this particular study since the 

balloon altitudes under consideration are much lower; 

the balloon would impact the surrounding plains and 

slopes before it hit the peaks. 

 

2.3 Flight Level Winds 

 

The pressure cycle from the MGCM was compared to 

the Viking Lander pressure timeseries to determine 

how accurately the model was in reproducing the mass 

cycle.  This is important because the MGCM data, 

which is natively on sigma-pressure surfaces must be 

interpolated to a constant density surface.  Errors in the 

model pressure will lead to errors in density, and the 

true height of a density surface above the ground level 

will be in error.   

 

The MGCM data was interpolated to the lander 

locations and then hydrostatically reduced to the 

correct altitude using the average diurnal temperature 

in the lowest 10 km to compute the scale height.  The 

model was anywhere from 2-4% to high depending on 

season and location.   That the model offset is not 

uniform for VL1 and VL2 for a given season and this 

is indication of intrinsic model error rather than an 

initial incorrect specification of total CO2 in the 

system. 

 

To remove as much of the systematic model error as 

possible from our calculations, the model densities and 

pressures are scaled so as to minimize the offset 

between the model and the observed pressure cycles.  

The scaling factor is a few percent at most.  We note 

that even after the scaling, the pressure cycles are 

typically off by ~1%, as it is not possible to produce 

simultaneous agreement between the model and both 

observation locations.   

 

After scaling, it is prudent to recognize that the model 

values are still likely to be off by several percent or 

more compared to the Mars atmosphere at the time of 

balloon insertion and flight.  Small changes in 

atmospheric dust loading produce relatively large 

Figure 1.  Topography in the 5x6
o
 Ames MGCM 

simulation used for the trajectory calculations.  All 

the large, major topographic barriers are resolved.  

However, the montes peaks are less than half their 

true height, and the Tharsis plateau is broader and 

slightly higher than that of Mars.  Still, the peaks are 

higher the balloon altitudes considered and the 

broad, high plateau provides a conservative 

assessment for topographic impact. 



changes in the density profile, and such changes in dust 

loading are stochastic. 

 

Notwithstanding the scaling, two locations in the 

northern hemisphere are not nearly enough to 

adequately establish the global pressure cycle.  A 

statistically significant number of stations (i.e., a 

number much greater than two) are required to make a 

more meaningful model correction.  However, there 

are only two stations available, and we make use of 

what is available.   

 

After adjusting the model based on the Viking Lander 

pressure data, the model fields are interpolated to a 

constant density surface. An isopycnal surface must be 

selected on which to integrate Eq. (1). This is done by 

selecting a starting Ls and desired balloon altitude. The 

average global density at that altitude is computed from 

the GCM output averaged over a 30 sol time period 

beginning with the selected starting Ls. Of course, the 

actual height of any given density surface will vary in 

time and space, but the above described mention 

guarantees that on a global and time average, the 

density surface is at the desired altitude. The results of 

this calculation for a variety of float altitudes is shown 

in Table 1.  Locations where the isopycnal surface 

intersects or is below the topography are flagged and 

stored for use during the trajectory calculations. 

 

Table 1.  Global Average Density (kg/m
3
) 

Ls z=0 km z=2km 

135 .01245 .01111 

140 .01245 .01104 

145 .01247 .01100 

150 .01250 .01110 

155 .01260 .01102 

160 .01270 .01108 

165 .01290 .01115 

170 .01305 .01123 

175 .01327 .01133 

180 .01350 .01146 

 

2.4 Trajectory Integrations 

 

Eq. (1) is solved numerically through discretization: 

 



r V h (x,y,t)t  .  (2) 

 

The velocity is obtained by interpolating the GCM 

output in time and space.  A six minute time step (



t ) 

is used in the integration.  After each time step, the 

computed change in the position vector is decomposed 

into a bearing and distance, which is then used along 

with the previous position to obtain the new location.  

From spherical trigonometry, it can be shown that 

given an original latitude/longitude position 



(1,1)  

and a bearing 



  and distance d, with planetary radius, 

R, the new latitude/longitude position 



(2,2)  is 

given by 
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R
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d

R
)cos ,     (3) 

 

and 

 



2  atan2(sin sin
d

R
 cos1cos

d

R
 sin1sin2) .   (4) 

  

In practice, the balloon trajectory calculations involve a 

number of steps.  First, the average density of a 

specified altitude is calculated over a 30 sol window 

beginning at a given Ls (cf. Table 1).  The result is 

used to interpolate the meteorological data from each 

GCM output time (ever 1.5 Mars hours) to the 

specified isopycnal surface.   

 

Integration requires two initial conditions: the starting 

time and the starting location. For these studies, a local 

time of 1400 is selected for no other reasons than: 1) it 

makes sense to deploy during the day when the sun is 

up and power is immediately available; and 2) this 

roughly when the MERs landed.  In reality, the actual 

landing time will depend on many factors, including 

the requirement for direct-to-Earth communication 

during critical entry, descent, and inflation sequencing.  

The initial starting location depends on the trajectory  

 

After specifying the initial conditions, the isopycnal 

data (previously interpolated from the full GCM 

output) are further interpolated in space and time to the 

balloon location.  The interpolation in space uses a 

weighting scheme inversely proportional to distance.  

So, model grid point locations closest to the balloon 

location are given the most weight.  Time interpolation 

is linear between GCM output times.  The GCM fields 

are then once again interpolated in space and time to 

obtain values at a t time later, but at the same initial 

balloon location.  Thus, there are now two sets of 

balloon data, those valid at the initial time at the initial 

balloon location, and those valid at a small time 

increment later also at the initial balloon location.   

 

Next, the zonal (u) and meridional (v) components of 

the wind for the two balloon times are individually 

averaged to produce a single, average wind vector 



(u ,v ) valid over the time interval t.  It is these 

values that are used in Eq. (2), which is split into 

component form: 

 



xtt  xt  u (t,t t)t ,      (5) 

and,  

 





ytt  yt  v (t,t t)t .      (6) 

 

The new balloon positions given by Eqs. (5)-(6) are 

then converted to a distance and bearing from the 

starting location, and these are then substituted into 

Eqs (3)-(4), to give provide the latitude/longitude 

location of the balloon at time t+t.  The procedure of 

spatial and temporal resolution is then repeated to step 

the balloon location forward to time t+2t. 

 

In some cases, the isopycnal surface will intersect the 

ground.  When this happens, any data points below the 

ground are not used in the trajectory calculations (i.e., 

the weights of these points in the spatial averaging are 

set to zero). The balloon is assumed to experience 

unplanned ground sampling event (i.e., it crashes), if 

the altitude of the balloon is found to be below the 

GCM topography that has been spatially interpolated to 

the balloon location.  Typically, if the balloon is still 

flying after approximately 30 sols of integration, the 

simulation is stopped, although the time cut-off can be 

changed as needed. 

 

During the balloon integration, environmental values 

(temperature, pressure, winds) and location (including 

local topography elevation) are stored in an output file 

at 1 hour intervals.  These data are then used to analyze 

the flight paths, as described in the next section. 

 

 

 
Fig. 2.  Flight time for a balloon launched from a given location for different starting Ls.  Unshaded areas indicate 

regions where 0 km MOLA is below ground. 



There are two basic types of trajectory calculations.  In 

the first, the planet is divided into a 2x2 degree grid, 

and balloons are launched from each location.   

Statistics from each of these balloon flights are 

calculated and used to produce contour maps.  

Examples of statistics and maps include time of flight, 

distance traveled, average speed, maximum speed, 

average height above ground level, etc.   

 

The second type of trajectory calculation investigates 

the solution stability of launching from a particular 

location.  This scenario involves perturbing the initial 

launch location of the balloon by fractions of a degree 

to provide initial launch locations for additional 

trajectory calculations.  The trajectory of the balloons 

are plotted on the same map to provide so-called 

“spaghetti plots”.  If the solution is stable, each of the 

initial perturbations will result in trajectories that 

overly one another.  Often, the trajectories display 

chaos, with a preference for trajectories to cluster 

around two or more possibilities.  This second type of 

trajectory calculation is too computationally expensive 

to be done for each 2x2 degree grid point.  Therefore, 

the globally gridded trajectory results are inspected and 

solution stability calculations are initiated based on 

launch locations that look interesting.  

 

3. RESULTS 

 

 

 
Fig 3.   Same as Fig. 2, but for distance. 



Fig. 2 shows the flight duration for a balloon launched 

from a given duration as a function of Ls at a target 

density altitude of 0 km MOLA.  Areas shaded in red 

indicate launch locations that satisfy a nominal 30 sol 

mission duration requirement.    

 

At all seasons there are broad regions of potential 

locations that meet the 30 sol requirement.  In 

general, the most favorable locations are on the 

northern plains between Tharsis and Syrtis Major.  At 

early Ls, there is a broad, solid region of favorable 

locations in Acidalia Planitia (~0
o
W).  Over time, this 

area retreats northward, narrows, and generally 

becomes pockmarked with a few duration times below 

30 sols.  Another region, just to the east of Elysium 

Mons in Arcadia Planitia (~170
o
E) becomes 

increasingly favorable with time up through about 

Ls=165.  Later in the season, Utopia Planitia (~70
o
W) 

becomes increasingly favorable. There is some time of 

day dependence to the trajectory solutions, but the 

overall patterns are quite stable regardless of launch 

season. 

 The distance travelled by the balloons is shown in 

Fig. 3.  There is a clear correlation between flight time 

and distance travelled.  So, in general, the longer the 

balloon stays aloft, the greater distance it will travel.  

There is also a clear trend for the distance traveled to 

increase as a function of Ls.  As reference, consider 

that with a radius of ~3.39x10
3
 km, a circumnavigation 

at 60
o
 latitude corresponds to ~11,000 km.  Thus, at the 

earlier seasons, most balloons would fall short of 

circumnavigation at this latitude in 30 sols, and this 

does not take into account that the balloon trajectories 

are often sinuous.  Broadly speaking, while all Ls 

provide large launch regions of satisfactory 

duration, only the in the later season are travel 

distances sufficient to allow the possibility of 

circumnavigation within 30 sols.  
 The increasing travel distance as a function of Ls 

is consistent with the gradual strengthening of the polar 

jet; the balloons experience a stronger zonal wind, on 

average (Fig. 4 shows average speed).  The increase of 

patchiness of the time travel field within otherwise 

large expanses of flight times as a function of Ls is also 

consistent with the increasing speed and distance 

travelled.  Quite simply, the farther the balloon travels, 

the more likely it is to run into trouble.   Balloons 

move around the polar vortex, and occasionally they 

will drift a bit too far south and impact the higher 

topography.  This is mostly a random event as 

evidenced by the relatively uniform distribution of 

shorter flight times spread throughout the 30 sol flight 

time field.  As such, balloon trajectories are not 

deterministic.  At best, only a probability of 

 

 
Fig 4.  Same as Fig. 2, but for average balloon speed (top row).  Bottom row shows mean zonal wind from the 

GCM. 



achieving a 30 sol flight time can be established for 

a balloon launched in a given region. 
 

Table 2.  Percentage of Balloons Surviving for 30 Sols 

Ls Latitude 

range 

Longitude 

range 

30-sol 

Survival % 

135 45-60N 0-20W 99.2 

145 45-50N 0-10W 100 

135 40-50N 150-165E 100 

145 20-30N 160-170E 100 

160 50-60N 25-25E 94 

170 50-60N 10-40E 99.1 

 

Table 2. shows the percentage of balloons that achieve 

a 30 sol flight time within various specified launch 

regions and times.  This information is most useful for 

considering the probability of achieving a 30 sol flight 

time when considering both ground impacts and 

available power.  The launch location windows in 

Table 2 are not meant to fully cover all the suitable 

launch times and regions.  Rather, the data show that 

there are suitable launch regions available over all 

Ls.   

 

 Balloons launched prior to ~Ls 165 do not run the 

risk of encountering the polar night until after the 30 

sol primary mission.  Therefore, minimum floor 

survivability is approximately 12 hours of darkness and 

cold.  Balloons arriving after Ls 165 do run the risk of 

encountering extended periods of darkness.  Using a 

launch time of Ls=180 in the area 50-60N and 10-40E, 

and assuming total darkness above 82N, only two 

balloons out of 52 were found to exceed 24 hours of 

darkness.  This does not include the possibility of an 

additional ~12 hours of darkness following emergence 

from the polar night.  None were found to go in  

 
 

Figure 5.  Spaghetti plot for a balloon launch centered in Hellas (42S, 70E).  Trajectories are calculated with 

0.2
o
 offsets from this location extending 0.5

o
 from the center.  The probability of following a particular 

trajectory is proportional to the density of the trajectories.  Two solutions are most probable: one leaves 

Hellas and then turns northeast toward Tharsis where it terminates; the other goes poleward and completes 

numerous high latitude circumnavigations. Tick marks are plotted every 1.5 mars hours 

 



darkness longer than 72 hours.  However, this number 

would clearly change if the latitude of the polar night 

were changed.  Thus, the probability of exceeding 24 

hours of darkness is given by p=2/52 (=4%) for a 

single randomly selected flight, and p=1/52 (=2%) for 

darkness beyond 27 hours.  Also bear in mind the 

statistics of small numbers; the histogram is not well 

populated for long durations of darkness.  

Spaghetti plots were generated for balloons launches 

centered in Hellas (42S, 70E), Acidalia Planitia (45N, 

30W), and northwest of Terra Merdiani (0N, 10W).  

These locations show moderate to long flight times.  In 

each case, trial balloons are launched from locations 

corresponding to points on a grid centered at the points 

indicated above and which extend 0.5 degrees in either 

direction at intervals of 0.2 degrees. 

 

There are two dominant trajectory regimes in the 

Hellas launch (Fig. 5).  The first is short distance 

flights that briefly move southeast out of Hellas but 

then turn to the northeast where they terminate at 

Hellas.  The second regime turns southeast out of 

Hellas and then circumnavigates the planet at high 

latitude.  The density of the trajectories is proportional 

the probability of following a particular trajectory.  The 

trajectories terminating at Tharsis are clustered fairly 

tightly, indicating that once on that path, the balloon 

location and fate is relatively deterministic.  In 

contrast, the circumnavigation solutions are not nearly 

as dense.  Some circumnavigation paths are near the 

pole while others are at 60
o
.  In addition to the two 

dominant solutions, there are also a few other minor 

possibilities, which include deviations into the Terra 

Meridiani region. 

The launches within Acidalia (Fig. 6) exhibit entirely 

different characteristics than those from within Hellas.   

There is only one dominate solution, which is 

subtropical to high latitude circumnavigation.  The 

density of the trajectories is large and uniform in a belt 

from about 30N to 75N, indicating no particular 

preference for any latitude within this belt.  However, 

the gradient drops off sharply on at the edge of the 

latitude belt.  One minor, but poorly clustered solution 

results in flights that terminate in the Tharsis region.   

Launches from Terra Meridiani (Fig. 7) are indicative 

off a gauntlet of sorts.  Nearly all the balloons meander 

in the launch region before ejecting toward the 

northwest rim of Hellas.  A substantial fraction of the 

balloons meet their fate on the rim.  A few divert 

around the north rim of Hellas.  Some of these drift 

toward an eventual impact with Tharsis, and few 

deflect southward around Tharsis where they 

 
 

 

 

Figure 6.  Spaghetti plot for launches centered in Acidalia Planitia (45N, 30W).  The dominant solution are 

subtropicl to high latitude circumnavigations.  One minor solution results in balloon flights terminating in the 

Tharsis region.  The density of the circumnavigation trajectories indicates that all paths are roughly equally 

probable.  However, the sharp gradients at the circumnavigation boundaries indicates that the latitude range is 

strongly constrained 

 



circumnavigate at high souther latitudes.  Some of the 

balloons deflect southward around Hellas, avoiding 

Tharsis altogether and enter the circumnavigation 

trajectories.   

 

An additional feature of note for slow moving balloons 

is the cycloid motion, which is most apparent for the 

balloons moving north of Hellas.  One cycloid is 

completed each sol, which is highly indicative of 

influence from the thermal tide.  An inertial oscillation 

could also play a role, but is rejected as the cause since 

the effects would be minimal in the tropical latitudes 

where cycloid trajectories are present. 

 

 

 

 
 

Figure 7.  Same as F/ig. 5 but for launches from Terra Meridiani. 

 


