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robust landing system for future missions.  Design and 
development activities are structured to apply to a 
variety of space-based missions, as well as satisfy the 
WGTA requirements.  Special design accommodations 
for the WGTA system are noted for parallel or 
subsequent design, analysis and test.  The goal for the 
team is to develop a robust, lightweight landing system 
that meets the requirements outlined in Section 2.  
Prototype component testing and analysis of the system 
indicate the design will meet this goal. 
 

2. LANDING SYSTEM REQUIREMENTS AND 
TRADES 

 
Throughout the ILN and RLL effort, the design team 
has collected many requirements from a variety of 
mission concepts and instrument payloads.  Over the 
course of several studies, these requirements (see Sect. 
2.1) were used to inform a series of trades (see Sect. 
2.2).  As many mission requirements are similar, the 
progression of trades led to a common baseline system 
architecture for most of the mission concepts studied.  
As the system architecture evolved, the team was able 
to establish more detailed subsystem-level 
requirements (see Sect. 2.3), which the mechanical 
team used for a detailed landing system design. 
 
2.1 Mission Requirements 
 
Several mission requirements were critical to the 
landing system architecture trades.  First, the target in 
all RLL concept studies has been the Earth’s moon.   
The lack of an atmosphere eliminates the opportunity 
to use aerobraking prior to landing, but also eliminates 
concerns about aeroshells, aeroheating, etc. during 
descent.  Second, with the extensive and detailed 
surface mapping of the moon from missions such as the 
Lunar Reconnaissance Orbiter (LRO) and 
Chandrayaan-1, a priori knowledge of the approximate 
landing site parameters was assumed.  While the 
landing site is dependent on the mission, areas with 
minimal distribution of rocks and craters greater than 
30 cm and gentle overall slopes of less than 10 degrees 
comprised the set of landing hazards.  In some cases, 
these areas could be found with relative ease, and the 
targeted landing site could be up to 100 km wide.  In 
other areas, the desire to land at a more controlled 
location, or the presence of hazards in the vicinity of 
the landing target required an on-board system to 
provide more precise navigation.  Once the lander 
arrives at the landing site, the orientation of the lander 
must be controlled.  For communications, thermal 
control, and some science requirements, a particular 
side of the lander was required to point toward a lunar 
pole.  In addition to clocking of the lander, in some 
missions a controlled slope of the lander decks was 
required. 

 
2.2 System Architecture Trades 
 
An important trade for the lander system architecture 
was the type of landing system.  A comprehensive 
survey of previous lander concepts, along with a 
concerted effort to explore many options, produced a 
set of possible lander configurations.  Landing systems 
considered fell into two broad categories, each 
comprised of subcategories. 
 
• Soft Landers 

− Legged landers (Apollo, Phoenix) 
− Platform or pallet landers (Surveyor) 
− Airbag landers (MER) 

• Hard Landers 
− Penetrators 
− Impactors 

In an effort to keep the lander concepts relevant to 
multiple mission concepts, a wide range of payload and 
system masses was considered.  The resulting lander 
concept should perform a variety of tasks, and be 
launched on a variety of launch vehicles.  Due to the 
sensitivity to shock of the seismometer in the ILN 
mission and the general lack of success of penetrator 
missions, the hard lander category was eliminated 
fairly early.  Airbags were eliminated due to the need 
to control landing orientation, concern over the 
deflated airbag restricting instrument access to the 
lunar surface, and overall system mass.  Low mass 
became the driving requirement in many trade 
downselects.  While the platform lander concept 
seemed very promising, practicalities of the lander 
system requirements, such as ground clearance for 
thrusters and control of landing orientation eventually 
eliminated the pallet concept.  The legged lander 
concept would be the baseline design. 
 
2.3 Landing System Requirements 
 
Other system requirements that influence the design of 
the landing system are the set of parameters that bound 
the kinematic state of the lander at touchdown.  
Working together, the mechanical and GNC subsystem 
teams established the requirements in Table 1 for the 
lander at touchdown.  These requirements are also 
similar to landing design requirements from previous 
lunar missions. 
  



 
Table 1. Landing System Touchdown Requirements 

Requirement RLL WGTA 
Vertical rate (m/sec) 0.0 - 1.25 0.0 - 4.0
Lateral rate (m/sec) 0.0 - 1.25 0.0 - 1.5
Lander angle (deg) 0.0 - 10.0 0.0 - 10.0
Angular rate (deg/s) 0.0 - 5.0 0.0 - 10.0
Free fall height (m) 0.0 - 1.25 0.0 

 
The different values for vertical rate and drop height 
between the RLL and WGTA reflect the difference in 
planned landing operations.  Both landers intend to 
descend at 1.0 m/sec during the terminal descent phase 
of landing.  At approximately one meter above the 
surface, the RLL lander intends to shut off its engines 
to reduce engine plume effects on the surface.  The 
WGTA engine shut-off is trigged when the landing leg 
deflects and trips the ground contact sensor.  Free fall 
of the WGTA was avoided because of the much higher 
gravity on Earth, which leads to much higher impact 
velocities.  Using Eq. (1), where Vf and V0 are final and 
initial velocities, g is acceleration due to gravity, and h 
is drop height, the maximum impact velocity for the 
RLL on the moon is 2.4 m/sec. 
 

 (1) 
 

Although the WGTA does not plan to free fall to the 
surface, the WGTA vertical rate requirement is 
significantly higher than the RLL to account for 
landing anomalies as the control and landing systems 
are developed and tested.  Another unique requirement 
for the WGTA landing system is that it be reusable 
without servicing legs after each landing. 
 

3. BASELINE LANDING SYSTEM CONCEPT 
 
Once the baseline system architecture and high-level 
requirements were defined, the RLL mechanical team 
could begin defining the details of the landing system.  
There are many successful lander programs from which 
to build upon.  Missions such as Surveyor, Apollo, 
Viking, and Phoenix provided valuable lessons learned 
to the design of the RLL landing system.  Consistent 
with past robotic landers, the RLL landing system 
contains only three legs, primarily due to mass 
constraints.   
 
3.1 Leg Configuration 
 
Two basic leg configurations were considered: 
cantilever and inverted tripod, each with three 
members attached to the lander and a footpad at the 
base (see Fig. 2).  In the early RLL concepts, the 
cantilever leg design was chosen, primarily based on 
the extensive documentation from Apollo landers.  

However, as the overall lander design matured, a leg 
configuration trade showed the inverted tripod design 
to transmit load more efficiently.  Although the 
inverted tripod design requires longer secondary legs 
and produces slightly higher axial loads in the primary 
leg, it also avoids the significant primary leg bending 
moment in the cantilever design. 
 

 
Fig. 2. Leg configurations 

 
Many previous landers had to accommodate 
deployable legs, but the majority of the RLL concepts 
did not have tight volume constraints for the legs.  To 
keep the design simple and mass lower, a leg 
deployment feature was not included in the baseline 
design. 
 
3.2 Energy Absorption 
 
Another leg configuration trade was focused on the 
method of absorbing the landing impact energy.   To 
prevent damage to the lander and its components, a 
requirement to limit quasi-static acceleration of the 
lander center of gravity (CG) to 5G was assumed.  
Hydraulic and pneumatic systems were avoided to 
reduce assembly complexity and mass.  A crushable 
aluminum honeycomb cartridge, similar to the Apollo 
design, was an easy choice based on its previous 
success, well-documented, linear behavior, and low 
mass.  In the interest of fully exploring the trade space, 
low density aluminum foam was also considered.  
However, aluminum foam testing showed it to be 
expensive and not as predictable as honeycomb.  The 
ability to specify the foam’s density and to apply load 
in many directions may make it attractive for other 
applications, but the aluminum honeycomb was 
eventually chosen as the baseline. 
 
The major differences between the RLL and WGTA 
landing system are the WGTA’s higher impact velocity 
and its requirement that the system be reusable without 
service.  To help relieve the effects on the leg design of 
the increased impact energy, the WGTA quasi-static 
CG acceleration limit was increased to 10G.  The 
durability required of the WGTA structure to withstand 
many landing cycles means significant structure mass 
would not be added to the system to meet the 10G 
requirement. 
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