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ABSTRACT

In this paper, we present the vision-based absolute navi-
gation (VIBAN) system that enables the global localiza-
tion ability (also called ”pinpoint landing”) of the lan-
der. The system integrates the absolute visual localisation
(AVL) approach Landstel with visual odometry (VO), a
relative visual motion estimation approach. The combi-
nation of the two vision-based sensors has several advan-
tages. Firstly, a higher accuracy and a better robustness
in localization ability is obtained. Secondly, the AVL
system can exploit the points tracked by visual odome-
try in order to robustify the system itself. Finally, these
tracked points are also used according to a fault detection
approach to verify and check the correctness of the AVL
algorithm. Extensive simulations illustrate the proposed
approach.
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1. INTRODUCTION

Autonomous safe and precise landing is an important ca-
pability required for future automated landers targeting
the polars region of the Moon. The stringent landing ac-
curacy requirements, typically few hundreds of meters,
stems from the need to access restricted illuminated areas
allowing mission operations of several lunar days. How-
ever, the current Descent and Landing technologies are
still far from this ability, and various solutions have been
introduced to solve the “pinpoint landing” problem, i.e.
precise spacecraft localization with respect to a known
reference.

Approaches using a camera as the primary sensor in-
clude SIFT feature matching [11], crater detection and
matching [1], optical flow [4], template matching [7] or
the landmark constellation matching approach (“Lands-
tel” [9]) – see an overview in [5]. The common princi-
ple of these vision based techniques is to extract surface
landmarks on every descent image and to match them

to landmarks extracted from the ortho-rectified image of
the landing area previously acquired (e.g. by an orbiter.
These matched points are then used to estimate the global
position of the lander thanks to the Digital Elevation Map
(DEM) associated to the ortho-image.

With respect to inertial navigation, vision-based ap-
proaches provide a significant improvement in solving
the pinpoint landing problem. Nevertheless, most of the
current work only presents results obtained with a stan-
dalone AVL function. A loose coupling mechanism be-
tween an AVL sensor and an inertial sensor (INS) is pre-
sented in [10]. The work of Mourikis et al [7] called VISI-
NAV also describes a tight integration between the AVL
method based on persistent features, and a visual odome-
try method using opportunistic features.

The goal of this article is to present a full integration of
visual odometry and the AVL approach “Landstel”, pre-
viously depicted in [9], within the VIBAN system. In this
system, absolute and relative positions estimated by the
two functions are fused, and the feature points detected
and tracked by visual odometry are also used to ease the
AVL function. The first advantage is to provide a solution
which is more precise, faster and more robust. The sec-
ond advantage is that points tracked by visual odometry
are also exploited to enhance the Landstel approach and
to detect false estimates.

Outline: the next section presents the VIBAN system ar-
chitecture in which the Landstel and the visual odome-
try methods are integrated, via the Consistency Check-
ing module and the Global Navigation filter. The various
steps involved in the Landstel algorithm are also briefly
depicted in the same section. Section III introduces the
approach applied by the Global Navigation filter, in or-
der to fuse the absolute position estimated by Landstel
with the relative motion estimated by the visual odom-
etry (or by an inertial navigation sensor). Section IV
firstly presents the vision-based fault detection principle.
Then, it introduces how to exploit points tracked by visual
odometry in order to robustify Landstel. Finally, valida-
tion results obtained with the VIBAN system in a Lunar
landing scenario are presented in section V.



2. GLOBAL ARCHITECTURE

Figure 1. The VIBAN system architecture.

Figure 1 presents the VIBAN system architecture with
two main components: the visual odometry and the Land-
stel functions. The outputs of visual odometry are firstly
used to enhance the global position estimation provided
by Landstel via the Global Navigation filter. Then, these
outputs are also used to make the integrated system more
robust, by directly feeding this information into Landstel.
Finally, the visual odometry outputs are used to verify the
output of the Landstel function in the Consistency Check-
ing module.

2.1. Visual Odometry

The first visual odometry ever to be used in a spatial
system is the Descent Image Motion Estimation System
(DIMES) [2]. The sensor was implemented on the Mars
Exploration Rovers (MER) in 2003 and tracked four cor-
ner points through three sequential images during the
Mars descent to estimate the spacecraft’s ground-relative
horizontal velocity.

Another visual odometry (the “NPAL” camera) is de-
scribed in [3]. The system is based on an EKF filter
in which the positions of features are included in the
state vector. The output of the system is firstly the rel-
ative spacecraft movement in position and altitude and
secondly, the list and the positions of tracked landmarks
through a series of descent images.

Note however that the visual odometry used in this arti-
cle is simulated using Sift points matches [6]. Given two
consecutive images, Sift features of each image are ex-
tracted and compared with each other, which gives a list
of matched points between these two images. The step
is repeated from the first till the last image in the descent
series to form a list of tracked landmarks.

2.2. Landstel

Figure 2. Different steps of the Landstel algorithm (see
[9] for details).

The Landstel module is composed of one off line and one
on line functions. In the off line one, the DEM and the as-
sociated 2D ortho-image of the foreseen landing area are
built from Orbiter images. Initial visual landmarks are
then extracted in the ortho-image (further denoted as the
”geo image”), using the Difference of Gaussian (DoG)
feature points detector [6]. A signature is defined for each
extracted feature point. The initial landmarks 2D posi-
tions, their signatures and their 3D absolute co-ordinates
on the planet surface constitute a database stored in the
lander memory before launch.

The on line function of the Landstel algorithm consists in
5 steps (figure 2). The first and second steps extract and
transform the information in the descent image so that
the similarity of the geometric repartition between the de-
scent landmarks and the initial landmarks is maximized
(using an homography computed from the altimetry and
orientation information). Then, the third step allows to
extract the signature of each descent landmark. The ex-
tracted signature of each descent landmark is compared
with the initial landmarks signatures (step 4): a list of
match candidates from the initial landmarks set is associ-
ated to each descent landmark. In the last step, a voting
scheme is applied to access the correct matches: several
affine transformations are extracted within the potential
candidate list, and the best affine transformation (the one
supported by the highest number of matches) is used to
generate other matches between descent landmarks and
initial ones.

Images on figure 3 show two examples of the final
matches obtained by Landstel with different illumination
conditions.



Figure 3. Two examples of matches provided by Landstel
under different illumination conditions. The geo image
(left) is acquired with 55o − 25o (azimuth-elevation) sun
position, whereas the descent images (right) are acquired
at 5710m altitude with 145o−10o Sun position (a) and at
3052m altitude with 235o−10o Sun position (b). Zoomed
areas of the geo image (center) show the corresponding
matched regions of the descent images in the geo one.

3. FUSION OF GLOBAL AND RELATIVE POSI-
TION INFORMATION

The main objective of the fusion between the Landstel
absolute position estimate and the visual odometry rela-
tive motion estimate, is to yield a more precise absolute
estimation of the spacecraft’s position. This is achieved
thanks to the complementary filter implemented in the
Global Navigation filter (figure 4).

Moreover, the integration of the estimated motion pro-
vided by visual odometry, can allow Landstel to focus
the match search within a specific region of the geo im-
age instead of searching in the whole landing area. This
focusing mechanism not only accelerates the algorithm
by reducing the search area, but also improves the algo-
rithm’s performance by limiting the false matches proba-
bility.

The Kalman filter implemented in the Global Navigation
filter (figure 4) is defined as follows:

1. System state:

x = [δΨT δvT δpT ] (1)

where δΨ is the system attitude’s error, δv the sys-
tem speed’s error and δp the system position’s error.
Each term is a 3-dimensional vector (3× 1).

2. Transition matrix:

Φk =

[−Ωe
ie 03 03

[a×] −2Ωe
ie Υ

03 I3 03

]
(2)

where the 03 and I3 symbols respectively denote the
3 × 3 null matrix and the 3 × 3 identity matrix,
and Ωe

ie is a skew-symmetric matrix which repre-
sents the planet rotation given by the angular rate
ωe
ie = [ω1, ω2, ω3] between the planet-centered iner-

tial frame (i-frame) and the planet-centered planet-
fixed frame (e-frame):

Ωe
ie =

[
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]
(3)

and Υ = −(Ωe
ieΩ

e
ie − Γe), Γe being the short no-

tation for the gravity gradient (the derivative of the
gravity). The [a×] represents the misalignment of
the transformation matrix between the i-frame and
the e-frame.

3. Observation: the observation provided by Landstel
is the spacecraft position p [9].

zk =

 02×3

[pGlobal
k − pLandstel

k ]

 (4)

and the observation matrix is:

Hk =

[
0 0 0
0 0 0
1 1 1

]
(5)

Figure 4. The Landstel-INS fusion principle.

As the Kalman filter used in the Global Navigation fil-
ter is a feed backward filter where the estimated error is
provided to the Global State module after each observa-
tion, the prediction state in this case is always equal to
zero. In reality, the inertial sensors are considered as be-
ing initially calibrated and all errors are removed, thus
the prediction state x(1|0) is set to zero. Moreover, after
each estimation with the Kalman filter, the estimated po-
sition’s error is always returned back to the Global State
module for correction due to the feed backward mecha-
nism. As a consequence, the error in the current global
state is considered as being corrected, which results in a
zero prediction state.



The Kalman filter estimates the error in the current esti-
mated position stored in the Global Navigation filter and
the uncertainty of the estimated global position, provided
by the covariance matrix P̂k|k−1.

4. FUSION OF TRACKED POINTS

4.1. Vision-based fault detection

Figure 5. This figure illustrates the use of the camera
projection function to predict the future positions of the
Landstel matched points. With Landstel, the 3D surface
points DLS are associated to each matched points M in
the descent image. Then, the lander position P1 at time 1
is estimated as PLS

1 . Using the motion estimation δP INS

provided by visual odometry, the next position P̂LS
2 is cal-

culated. On the basis of P̂LS
2 and D1, D2, D3, the pre-

dicted positions of M1, M2, M3 at time 2 are calculated

The role of the vision-based fault detection in the Consis-
tency Checking module is to verify the correctness of the
Landstel global position estimation. The fault detection
function is based on the comparison between the obser-
vation set and the prediction set of the matched points set
M .

• Prediction Set: using the estimated position returned
by Landstel P t

LS and the motion estimation between
t and t + 1 given by visual odometry, the posi-
tion of the lander at t + 1 is predicted as P̂ t+1

LS =

P t
LS + δP

t+1|t
INS . As illustrated in figure 5, each point

Mk in the set M t, is associated to a 3D point Dk on
the surface. The set of 3D points matched by Land-
stel at time t is named DLS . Given the predicted
position P̂ t+1

LS and the group of 3D points DLS , the
positions of theM t points in the next image are pre-
dicted using the back projection function. The im-
age (b) in figure 6 illustrates the predicted positions
of the matched points at t in the image acquired at
t+ 1 (in red). The prediction set is calculated with:

Pre(M t) = BackProj(M t, P̂ t+1
LS , DLS) (6)

= BackProj(M t, P t
LS + δP

t+1|t
INS , DLS)

(7)

• Observation Set: given a set of the matched points
M t returned by Landstel at time t, the set point is
tracked to the next image at time t + 1 with visual
odometry. The left image in figure 6 shows a subset
of the matched points returned by the Landstel algo-
rithm (in blue). The right image shows the tracked
points of the matched points in the next image (in
green). The observation set is thus obtained via:

Obs(M t) = Track(M t, imt, imt+1) (8)

Using the observation function in equation 8 and the pre-
diction function in equation 7 (illustrated by the green
and red points in figure 6), the Landstel output is consid-
ered as being incorrect if the prediction set is inconsistent
with the observation set. Indeed, the observation set de-
pends only on the nature of the two consecutive images
or more precisely on the functionality of the visual odom-
etry which is considered as highly precise and reliable at
short term. In contrast, the prediction function does not
exploit the content of the two images. In fact, the pre-
diction set depends only on the output of the Landstel
algorithm, i.e. the estimated position and the associated
3D points. The motion estimation provided by the visual
odometry is also considered as being precise in compar-
ison with the Landstel error during a short period of one
second (Landstel is operating at 1 Hz).

Let ξ the difference or the innovation between the obser-
vation set and the prediction set:

ξ(M t) = Obs(M t)− Pre(M t) (9)

The normalized value α of the innovation vector ξ(M t)
is calculated with:

α = ξ(M t)T ∗ P (M t)−1 ∗ ξ(M t) (10)

where P (M t) is the covariance of the matched points
M t. The covariance value here indicates the precision
of the Landstel matched points location, which depends
on the parameters used in the Landstel algorithm and is
calculated off line. The value α is used to compare with a
predetermined threshold to classify the Landstel output.
If the α value is bigger than the threshold, the Lands-
tel output will be reported as erroneous and will be dis-
carded, and only the visual odometry information will be
used to propagate the global position estimation – until
Landstel retrieves an absolute position estimate.

Nevertheless, when the prediction set is consistent with
the observation set, it does not mean that the Landstel
output is correct. The Landstel output is however then
considered as correct and is fed to the Global Navigation
filter, hoping that subsequent steps will retrieve a poten-
tial inconsistency.

4.2. Landstel Robustification

The main purpose of the Landstel Robustification proce-
dure is to increase the number of matched points returned



Figure 6. (a): a descent image with the subset of the
Landstel matched points. (b): the next descent image
with the Landstel interest points tracked by visual odome-
try (in green) and with the prediction points (in red). For
visualization purpose, only the points matched by Lands-
tel which are successfully tracked by visual odometry are
shown (23 out of 31 here).

by Landstel, which consequently improves its precision.
Given a set of matched points returned by Landstel at one
instant (blue points in figure 6), the set is tracked to next
image with the visual odometry (green points in figure
6). After having successfully tracked the matched points,
the tracked points are injected into the affine candidates
set of the Landstel algorithm (output of step 5). Then,
the new candidate will be considered as the other normal
candidates. Among these affine candidates, the one with
the highest number of matches will be considered as the
best candidate and will be used to calculate the position
of the spacecraft.

5. RESULTS

5.1. Experiment setup

The purpose of these experiments is to analyse the
VIBAN system sensitivity for Lunar landing application
with the PANGU simulator [8]. In these experiments,
the system sensitivity in regard to different parameters as
well as the system performance analysis are carried on.
Two simulated terrains are used for these experiments.
The two simulated terrains used in this experiment. A
cratered surface (named ”NH”) and a mountainous ter-
rain (named ”MB”), are shown in figure 7.

In these experiments, the system is employed during the
Moon transfer orbit coast phase where the lander de-
scends from 100 kilometres down to 15 kilometres al-
titude as shown in figure 8. The lander traverses 5000
kilometres during 1 hour. Due to the long flight time,
the system is only tested at three altitudes which are at
100 kilometres (point A), 58 kilometres (point B) and
29 kilometres (point C). For each altitude, the system is
employed for a time lapse of 43 seconds with 1 Hz fre-
quency. Therefore, there are 43 images taken for each
lapse (also called ”trial”). The orbital image resolution

Figure 7. cratered surface with 20 craters/km (named
”NH”) (left) and mountainous terrain with 10 km eleva-
tion difference (named ”MB”) (right)

used for the two points A and B is 160 m/pixel while that
for the point C is 80 m/pixel.

Figure 8. Lunar Deorbit Phase(image not corresponding
to real scale).

In order to verify the robustness of the system with differ-
ent levels of sensor noise, the experiments are set up with
the following configuration (besides the nominal param-
eters described in section 6.6):

1. Camera inclination angle: in this scenario, the em-
bedded camera angle is about 50 degrees with re-
spect to the horizon.

2. Image: white noise N (0, 0.005).

3. Radar altimeter: there is no radar altimeter used.
However the lander altitude is known at the begin-
ning using earth-based localization with an accuracy
of 10 percent. Altitude information is then propa-
gated by pure integration of IMU measurement and
corrected by the VIBAN system.

4. Attitude noise: the INS attitude estimation is consid-
ered as being precise due to the usage of the visual
odometer and the star tracker (standard deviation be-
low 1◦ – the Landstel has however shown to be able
to cope with 5◦ attitude angle errors [9]).



5. Velocity error: the INS velocity error is [1, 1, 1.5]
metres (3σ) in long track, cross track and radial axis.

6. Initial position uncertainty: the initial position un-
certainty is set to 5 km for both the long track and
the cross track for every point A, B and C(worst case
scenario).

5.2. Analysis

5.2.1. Components performance analysis

In order to show the role of each component in the whole
system, the different elements of the VIBAN system are
analysed and validated one by one. In these tests, the al-
titude error is within 10 percent for each point A, B and
C, while the long track and cross track error is within a
range of 5 kilometres. The sun’s elevation is kept at 1
degree while the difference in azimuth angle between the
descent image and orbital map varies from ±45, ±90 de-
grees to 180 degrees. In general, there are 5160 images
(120 trials) used for these experiments. The cratered sur-
face NH is used in this test.

Figure 9. Estimation result with the number of ”false”
and ”correct” estimations and the number of images
where the algorithm can not find matches (5160 images
in total). The left chart shows the results obtained with
Landstel in a standalone mode, the middle one shows
the result obtained with visual odometry-Landstel posi-
tion fusion. The right chart shows the results obtained
with the vision-based fault detection and with the Lands-
tel robustification.

Figure 9 illustrates the number of image (among 5160
images) where the algorithm can provide a correct esti-
mation, a false estimation or where the algorithm can not
deliver a position estimation. As shown in the middle
chart of the figure, the combination of the relative po-
sition estimation computed by the INS (or by a visual
odometry) and of the global position estimation provided
by Landstel shows better performance than Landstel in
a standalone mode. In this case, the number of ”false
estimation” is decreased from 26 percent down to 6 per-
cent thanks to the reduction in the geo image search area.
The number of ”no estimation” reduces from 29 percent
down to 26 percent. In fact, the ”no estimation” case is
less dangerous than the ”false estimation” since the lan-
der can still navigate by integrating IMU measurements.

By comparing the right chart with the center one, the
number of ”false estimation” is reduced from 6 percent
down to 4 percent which means that 38.8 percent of faults
are detected. In this case, the number of the ”correct esti-
mation” increases to 70 percent from 68 percent.

As shown by these experiments, a full integration of the
Landstel sensors with visual odometry yields a better ro-
bustness and accuracy. Therefore, the full system is used
for the following analyses.

5.2.2. Estimation errors

Figures 10 and 11 show the position estimation error of
the VIBAN system for the three start points A, B and C.
The performance of the system at points A and B is equiv-
alent: this is due to the fact that the orbital image resolu-
tion is the same for both case (160 m/pixel). At lower al-
titude (point C), the estimation is more precise since the
orbital resolution is doubled. The final estimation error
at the end of the trajectory starting at C is approximately
300 metres.

Figure 10. VIBAN performance with NH surface at 100,
58 and 29 km altitude.

Figure 11. VIBAN performance with mountainous terrain
MB at 100, 58 and 29 km altitude

However, with respect to the mountainous surface MB,



the performance of the system at 100 km altitude is bet-
ter than that at 58 km and is equal to that at 29 km. The
reason of this phenomenon is due to firstly the ratio be-
tween the lander altitude and the terrain height variation.
In fact, the Landstel algorithm assumes that the surface is
flat, since a homography is applied to the image to before
establishing the matches. At small altitudes, the moun-
tainous terrain MB violates this assumption. Secondly,
at high altitude the camera perceives more terrain, which
facilitates the landmark matching process.

5.2.3. Influence of the sun position

In this part, the VIBAN sensitivity to the sun parame-
ters is analysed. The first experiments study the impact
of the illumination difference between the orbital image
and the landing image. The second experiments study the
impact of the incidence angle between the camera orien-
tation and the sun’s azimuth.

5.2.4. Lander-Orbital Images Illumination

Figure 12. VIBAN average estimation error with 5 differ-
ent landing illuminations, with the cratered surface NH.

Two scenarios are evaluated here. The first one analy-
ses the illumination condition at the Moon poles:, the
cratered surface NH is more appropriate and is used in
this test. The sun direction for the orbital image is kept
at 5 degrees elevation and 0 degree azimuth while the sun
elevation for the landing image is kept at 1 degree and
the azimuth angles are set a 45, 90, 180, 270 (or -90) and
315 (or -45) degrees. The test is made with the image
acquired at all of the three points A,B,C (100, 58 and 29
km altitude). Figure 12 shows the average estimation er-
ror with respect to different landing sun condition of the
VIBAN system. As expected, the bigger the difference
between the ortho and landing images, the bigger the es-
timation error is. However, the VIBAN can still operates
in such conditions.

The second scenario represents a typical condition in the
middle of the coasting phase where the sun elevation is

relatively high. In this test, the mountainous surface MB
is used. The sun condition for the ortho image is set at
25 degrees elevation and 55 degrees azimuth. The land-
ing images are acquired with the sun whose condition is
respectively set at (55,25), (40,10), (40,40), (70,10) and
(70,40) (azimuth, elevation) degrees. Similarly to the first
scenario, the experiment is also made with images ac-
quired at 100, 58 and 29 km. Figure 13 shows the aver-
age estimation error with the different illumination con-
ditions: the estimation error is minimized if the landing
image illumination is identical to that of the orbital im-
age. However, different illumination conditions have lit-
tle impact on the system performance.

Figure 13. VIBAN average estimation error with 5 differ-
ent landing illumination with mountainous surface MB.

5.2.5. Lander/Sun Orientation

Here we analyse the incidence angle between the lander
camera orientation and the sun direction. In this analysis,
the cratered surface NH is used. The estimation error is
calculated with the different incidence angle. Figure 14
illustrates the average estimation error with the different
incidence angles, and shows that the VIBAN system per-
turbed when the sun is directly in front of the spacecraft.
In this situation, the embedded camera can only perceive
the craters rim. Therefore, the landing image content is
poorer than with other incidence angles. Figure 14 also
shows that there is no difference in the system perfor-
mance with incidence angle smaller than 90 degrees. The
final estimation error for the worst case is about 1500 me-
tres (at 100 kilometres altitude) while the best final esti-
mation error is about 1000 metres.

5.2.6. Nominal Scenarios

Contrary to the previous analyses where there is no con-
nection between the three points A, B and C, the nom-
inal scenario tries to analyse the VIBAN system within
a whole coasting trajectory. The estimation error at the
one of the two points B (respectively C) inherits from the



Figure 14. VIBAN estimation error with cratered surface
NH at 100 kilometres altitude, using different sun/lander
incidence angle.

VIBAN estimation applied for the trajectory starting at
point A (respectively B).

Figure 15. The two nominal scenarios

Two scenarios are defined for this analysis (figure 15). In
the first scenario, the lander follows the transition of the
Moon dark and bright sides from the North Pole down
to the South Pole. The sun/lander incidence angle is set
to 45 degrees for the points A and C (corresponding to
North and South Pole). For the second scenario, as illus-
trated in figure 15, the lander faces the sun at point A (i.e.
180 degrees sun incidence angle). At point C, the sun is
directly behind the lander. The difference in illumination
between the landing image and the orbital image varies
from 45 degrees to 345 degrees. The initial position error
at point A is set to (1.6; 1.6;0.1) km for long track, cross
track and altitude.

Figure 16 shows the average estimation error of five runs
with the two scenarios. Since at each point A, B and C,
the Landstel sensor is used with a time lapse of 43 sec-
onds, there are in total 129 estimation results. The navi-

Figure 16. Nominal

gation period using the INS or visual odometry between
the two points A and B or B and C isn’t shown due to the
large difference in time scale (129 seconds versus 2500
seconds). The relative navigation error results in high
jumps in the estimation error at the 43rd second and at
the 86th second. As explained above, the second sce-
nario yields larger estimation errors at the beginning of
the coasting phase due to the front sun situation. How-
ever, the difference in the estimation error at the end of
point A is corrected at the beginning of point B. The final
average estimation errors in magnitude for the two sce-
narios 1 and 2 are respectively 245 metres and 293 me-
tres ([151 149 38] and [186 164 28] in long track, cross
track and altitude). Trials with lower altitudes showed
that VIBAN can yield smaller estimation errors.

6. CONCLUSIONS

In this paper, we have demonstrated the benefits of the
coupling mechanism between an absolute vision-based
localization algorithm (Landstel) and a visual odometry
method. Similarly to an INS-GPS fusion problem, the
fusion between the global estimation computed by the
Landstel module and the local estimation provided by vi-
sual odometry, not only improves the localization preci-
sion but also enhances the system’s overall performance
in term of speed and robustness. Besides these advan-
tages, the use of the points tracked by visual odometry
also robustifies the Landstel performances.

Moreover, using visual odometry in the system instead
of conventional INS permits the introduction of a vision-
based fault detection approach, which can prevent the
system from using the incorrect information provided
by the absolute visual localization method. In fact, this
vision-based fault detection system can not only be used
with the Landstel function but can also be coupled with
other vision-based global position estimation solutions,
like the crater detection, the template matching or the op-
tical correlation approaches.
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