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ABSTRACT 
 
Control is a key question when we talk about space 
instruments. Usually, the instrument has to perform a 
sequence of actions and changes on this sequence are 
very expensive in terms of communication and time. 
We are developing a new technique to control space 
instruments, based on programmable finite state 
machines. This allows controlling systems and at the 
same time it gives flexibility to change the sequence of 
actions to execute. However, hardware implementation 
of the basic control makes the instrument more reliable 
than the software one. The programmable finite state 
machine is stored in RAM and it can be changed from 
Earth at every moment. The condition to execute one 
or other action can be selected dynamically by the user. 
One of the advantages of this technique is that the 
control can be implemented using non reprogrammable 
devices, because the sequence is stored in an external 
memory. The main disadvantage of this technique for 
using it in space is that it requires a large amount of 
memory. This means large size chips, which makes the 
hardware harder to route and it increases the size and 
weight. However with the new method presented here, 
the necessary memory is dramatically reduced. The 
actions to be performed by the system are grouped into 
“states”. The external RAM stores the condition to 
change the state, and the new state. 
We are testing our control system in MEDUSA 
instrument, to Exomars mission. A prototype board has 
been designed and this will allow us to finish the test to 
evaluate the goodness of our system. 
 
1. INTRODUCTION 

Control and reliability of space instruments are 
determinant factors for the success of the mission. 
Usually, the instrument has to perform a sequence of 
actions. Changes on this sequence use to be necessary 
but expensive in terms of communication and time. 
Alterations in the instrument operations are a typical 
activity after the launch. The main reasons to apply 
them are related with the unexpected hardware (HW) 
malfunction, HW efficiency loss, software (SW) errors, 
future improvements or changes in the mission 
objectives. 

Usually, these types of changes are done by software 
(SW) using partial modifications (patches) or full 
modifications (new software version). Patches are not 
easy to create, because they must be run keeping the 
current SW state. However they optimize the 
communications link that is critical in space missions. 
A new SW version is easier to produce but multiply the 
resources needed in the communications link and the 
complexity of the validation.  
In this paper we present a new method that allows 
changes in the sequence of actions by drastically 
reducing the communication link use. The method also 
executes the sequence using a programmable finite 
state machine instead a microprocessor. In that way we 
can reduce the need of sending SW patches, allowing 
also the control and reliability needed in a space 
mission by using safe design techniques for FSM 
(Finite State Machine) [1], [2], [3] . 
 
This paper is organized as follows: Section 2 describes 
the problem and explains how it is classically solved. 
Section 3 presents the new method developed by the 
authors. Section 4 is an application of this method to a 
real instrument, MEDUSA. Finally, in section 5 we 
present the conclusions and future work. 
 
2. PROBLEM DESCRIPTION AND STATE OF 

THE ART ANALYSIS 

As we have described before, changes in an instrument 
sequence are necessary in most of space missions. An 
example of sequence could be: power a laser on, start 
taking measures, and when some condition occurs, 
power laser off. FSMs have been widely used to solve 
this kind of control sequences.  
Some authors [4] use small calculus units to perform a 
sequence of actions. They say that these units execute a 
finite state machine therefore the whole system is a 
programmable state machine, as it is possible to 
program the connections between the calculus units.  
In this paper we are going to use a different concept of 
programmable state machine. Experiences in other 
space missions [5], [6], [7] have demonstrated that a 
hardware based system is more reliable than a SW one 
managing HW systems at low level. This is the reason 
because we try to avoid software as much as possible. 

 
 
 
 
 



 

One of the goals of our design method is that no 
processor will be needed; the FSM is implemented in a 
hardware configurable device (i.e. a Field 
Programmable Gate Array FPGA).  
We can consider each step of the sequence to execute 
as a FSM state. The basic FSM has fixed transitions 
between states, which cannot be modified. Therefore it 
is desirable to use a FSM that can modify the 
transitions between states, this is, it can change the 
sequence of actions. That is a Programmable State 
Machine (PSM) [8], [9]. As we are developing this to 
be used in a space mission, it is necessary to do it in a 
way that guarantees maximum reliability against 
possible failures [1], [2], [3].  
This idea has been applied to MEDUSA instrument, 
but it is possible to use it in other systems with a 
similar function scheme. 
 
3. PSM ARCHITECTURE 

Programmable State Machine is a special kind of Finite 
State Machine. Therefore we are going to explain first 
what a Finite State Machine is. Then the PSM will be 
introduced. 
A Finite State Machine is a model of behavior of a 
system with inputs and outputs, where the outputs 
depend not only on the current inputs, but previous 
ones. The state machines are defined as a set of states 
that acts as intermediary in this input-output 
relationship, making the history of the inputs signals 
determine for a moment a state for the machine. That 
way the output depends only on the current inputs and 
the state. 
Formally, a finite state machine is a five-tuple [10] 
 
(Q, ∑, q0, δ, F) 
 
where 
 
 Q: Finite set of symbols denoting states 
 Σ: set of symbols denoting possible inputs 
 q0 ∈ Q: initial state 
 F: Set of symbols denoting possible outputs 
 δ: transition function mapping QxΣ to QxF 
 
In one reaction, a FSM maps a current state p ∈ Q and 
an input symbol a ∈ Σ to a next state q ∈ Q and an 
output symbol b ∈ F, where δ(p,a)=(q, b)The basic 
FSM, flat and sequential has a weakness. Most 
practical systems have a very large number of states of 
transitions. Representation and analysis become 
difficult. A large number of states in a FSM can 
complicate the FSM encoding [11]. We can solve this 
problem by using hierarchy [12]. In a hierarchical FSM 
(HFSM), a state can be turned in another FSM. We will 
call the inside FSM the slave, and the outside the 
master [13]. Hierarchy does not reduce the number of 

states Q, neither the transitions δ but can significantly 
make the FSM easier to understand and encode. This is 
also applicable to the hardware implementation, which 
will be simpler. 
 

 
Fig.  1. Hierarchical FSM 

 
In Fig.1 there is a hierarchical state machine. The 
master state machine has only two states, A and B. The 
slave machine has four states: (p, q, r, s). In a flat FSM, 
there would be six states and six transitions, that can be 
coded by using between 3 and 6 bits. The number of 
bits used to encode the states depends on the desired 
type of encoding: using gray or binary encoding we 
would use fewer bits than using one hot encoding [14]. 
Codification is easier using hierarchy: to encode the 
master machine, we need from one to two bits for the 
state encoding, and we have only two transitions.  The 
states in the slave machine can be encoded by using 
between 2 and 4 bits, and there are only four 
transitions.  
This way of working can simplify the representation of 
the FSM. In fact, the encoding of two simples FSMs 
with 2 and 4 states respectively is cheaper in terms of 
hardware cost [15], representation, and it is easier to 
understand than the encoding of only one FSM with 5 
states and 5 transitions.  
The aim of the paper is to create a programmable 
hierarchical state machine, in which the transitions to 
change from one state to another can be altered for 
every machine of the hierarchy. 
The following sections will discuss the differences 
between states and functional blocks, the deterministic 
FSM used and the method for storing states and 
transitions. 
 

3.1. States and functional blocks 
The concept of “State” in a PSM is different from the 
concept of functional block in a system. In the HFSM 
the top level hierarchy indicates which blocks are 
working at the same time. As an example, let’s 

 



 

consider a system formed by three functional blocks, 
Bk1, Bk2 and Bk3, in which Bk2 and Bk3 are working 
at the same time in the state St1. 
 
 

 
Fig. 2. Hierarchical FSM with Bk2 and Bk3 blocks 

working simultaneously 

Note that inside state St1 there is also other finite state 
machine composed by the states (p,q,r,s). 
In Fig. 2 we can see the difference between states and 
functional blocks. States are represented using circles 
and functional blocks are represented using squares. In 
state St1, there are two functional blocks (Bk2 and 
Bk3) working concurrently. In the state St2 there is 
only one functional block (Bk1) working. Only one 
state can run at the same time, but the blocks inside it 
run concurrently.  
 

3.2. Deterministic FSM 
We say that a FSM is deterministic if from any state 
exists at most one enabled transition for each input 
symbol [13], in other case, the FSM is non 
deterministic. In this paper, we are going to refer to 
deterministic FSM.  
Let’s assume i1,i2,…in the set of inputs to change from 
one state to another. It is possible that not all the inputs 
affect to all the states. For example, let’s have a system 
that counts from 0 to 3. It has two inputs: “start” and 
“count”. The condition to start counting is a pulse from 
the input “start”. Once started, the counter must count 
each time the input “count” is 1. The process keeps 
until the counter reach the last state (the value is 3). A 
new pulse in the input “count” will return the system to 
the initial situation. The implementation as a FSM is 
shown in the Fig. 3 and the Table 1. 
 
 

 
 

Present 
state 

Input Next 
state 

Counter 
value 

St0 Start=’1’ St1 0 
St1 Count=’1’ St2 1 
St2 Count=’1’ St3 2 
St3 Count=’1’ St0 3 

Table 1: States and transitions for the counter example 

 
Fig.  3. Example of FSM with two inputs 

If the counter is in state 2 and a pulse from the input 
“start” comes, it will not affect to the counter work. 
This means that input “start” only affects if the state is 
St0. Therefore, we only have to take an input into 
account if the state can be affected by it.  
 

3.3. State and transitions storage 
In order to make the system a programmable FSM, it is 
necessary to store the states and transitions in a 
rewritable storage (i.e. a RAM). Therefore, by 
rewriting the RAM it is possible to have a new FSM. 
To store PSMs in RAM, some authors write all the 
possible transitions in the memory and then create a 
rule selector to discover which transition to make [8]. 
The problem of this method is that it needs a large 
amount of memory. This can be a problem if we are 
going to use this in a space mission with limited 
resources of weight, size and power.  
Almost always, the address bus is larger than the data 
bus. We can use the address bus to increase the 
maximum number of states that can be stored in RAM. 
This allows us to store large PSM in a RAM, by using 
less memory. 
This is the key idea presented in this paper: to use the 
address bus to encode the states and transitions.  The 
address bus encodes two items: one state and one input 
to have reaction with it. The datum for this address 
encodes the state to jump to. 

Start=’1'

Count=’1'

 



 

The previous counter example (Fig. 3) will be used to 
illustrate the way to store the PSM. There are four 
states that can be encoded using 2 bits (binary 
encoding). There are also 2 inputs with 1 bit wide. The 
Table 2 codes the present state, the inputs value and the 
next state.  
 

Present 
state: 
Encoding 

Input Next 
state 

St0: 00 Start=’1’ St1: 01 
St1: 01 Count=’1’ St2: 10 
St2: 10 Count=’1’ St3: 11 
St3: 11 Count=’1’ St0: 00 

Table 2. Table to encode a PSM for the counter 
example 

The Table 2 shows that each state is only affected by 
one input. Therefore, we only will consider the 
appropriate input for each state change in the address 
encoding.  
Using the address bus, we can encode the two first 
columns of the Table 1. The third column (next state 
column) is coded in the data bus. An example of 
transition codification can be: 
 

Address Data
State 

encoding 
Start 
input 

Count 
input 

Next State

0 0 1 0 0 1 
Bit 3 Bit 2 Bit 1 Bit 0 Bit 1 Bit 0 

Table 3: Address encoding for PSM counter example 

If we are in the state St0 and the input “start” changes 
from 0 to 1, the address to read would be 0010 address 
(Table 3). In that position, the stored data will be the 
encoding for the next state, in this case, the St1 state; 
the data stored will be “01”, that is the encoding for St1 
state. 
This technique allows storing a machine with four 
states and two inputs in two bits wide RAM with 4 bit 
wide address bus. 
The minimum number of bits of the address bus for 
RAM to encode the PSM is shown in Eq. 1 
 

Address Bits= log2n + ∑ik  (1) 
 
where n is the number of states, and ik is the total 
number of bits of input k for the state machine. This 
conclusion is valid for binary and gray encoding. The 
number of bits will be higher if we encode the states 
using other kind of encoding, like one hot [14]. 
In the design of a complicated system the number of 
inputs can be quite high, increasing the RAM size 
required. To avoid this, we can re-encode the inputs 
using only the number of inputs used in each state. In 
the case of the counter there are two inputs to the 
system, but each state uses only one of them. As we 

know this, we take into account only the maximum 
number of inputs that affects to the relative state (for 
the counter case, this number is 1). The table to read 
the address would be this way: 
 

Address Data 
State 

encoding 
Input Next state

0 0 1 0 1 
Bit 3 Bit 2 Bit 1 Bit 1 Bit 0 

Table 4: Address re-encoding for the counter example 

This means: if we are in the state “00” and the only 
involved input  (Start input) changes from 0 to 1, we 
have to read the address 001 to know the following 
state. Therefore, we have decreased the RAM address 
bus wide from 4 to 3. 
The RAM would be this way: 
 

Address Data 
001 01 
011 10 
101 11 
111 11 

Table 5: RAM encoding for example FSM 

But looking to this table, we can see that there are 
some non listed cases, which are related to impossible 
combinations of inputs, therefore these addresses will 
never be reached. However, in a space mission, all the 
addresses will be properly filled, ensuring the 
reliability of the system. The data for the non reachable 
addresses will correspond to a dummy transition to the 
present state. 
For the example, this would be the final table: 
 

RAM 
Address 

Data 

000 00 
001 01 
010 01 
011 10 
100 10 
101 11 
110 11 
111 11 

Table 6: Complete RAM encoding for example FSM. 
Shadow rows represent the dummy transitions 

The advantage of this method is that we only have to 
do one reading each time that it is necessary to change 
the state, without any extra selection algorithm. This 
also allows the possibility of change the RAM content 
while we are executing one state, as the next state only 
will be read when the input changes. Obviously, this is 
possible but it is recommended to take appropriate 
safety measures before doing it.  
  

 



 

4. APPLICATION TO MEDUSA EXPERIMENT 

To illustrate and test the goodness of our design 
method let’s use it for MEDUSA experiment. In this 
section we make a brief description of the MEDUSA 
instrument and then we apply the control method 
described before to control the instrument. 
 
The MEDUSA instrument is composed of a set of 
sensors to provide information about cumulative dust 
mass flux and dust deposition rate, physical and 
electrification properties of dust, size distribution of 
sampled particles, and correlation between water 
vapour abundance and time [16]. MEDUSA is a set of 
several subsystems. 

4.1. Optical and dust collection stage 
This stage is allocated inside a sample volume. A laser 
diode source provides light that is scattered by dust 
particles that pass through the sampling volume [16]. 
Two mirrors are used to concentrate the forward and 
backward scattered lights onto two photo-diode based 
detectors, working in photovoltaic mode. The collected 
particles fall onto a quartz crystal microbalance. 
Microbalances (MBs) are sensitive to the total 
deposited mass and they are well suited to measure the 
mass of micron/sub-micron particles. Its transducer is 
based on piezoelectric effect and it gives as output a 
frequency modulated signal which is proportional to 
the mass deposited on the sensor. It is necessary to take 
into account that the output signal frequency of these 
devices is also highly temperature dependent; therefore 
it is advisable when reading to obtain the value of this 
parameter as well. 
The optical detectors and the quartz crystal 
microbalance give also the exact count of the number 
of particles inside sampling volume.  
To collect particles inside the stage at a constant speed, 
a pump creates a laminar flux. 
 

4.2. Water vapour Microbalance Stage 
This stage detects water vapour in the atmosphere. It is 
based on a microbalance with an internally integrated 
Peltier and a thermistor for thermal control. The 
subsystem detects the water vapour by cooling the 
sensor under the frost point with the Peltier, and 
monitoring the deposition curve. This allows deriving 
the condensation behavior in the Mars atmosphere. The 
water frosts on the microbalance making the oscillation 
frequency change, due to the variation of weight. Then 
we can determine the atmospheric vapour partial 
pressure and relative humidity at the time of 
measurement. 
  

4.3. Dust Deposition and Electrification Stage 
(DDES) 

This stage is constituted by three sensors: dust 
deposition sensor, dust electrification sensor and a laser 
anemometer. It is equipped with its own 
microcontroller and it was thought as an independent 
instrument in which power supply and spacecraft 
communication are provided by the Main Electronics. 

4.4. Main Electronics 
The Main Electronics (ME) is in charge of 
management of all the subsystems explained above and 
the interface with platform central unit for 
telecommands, telemetries and signals conditioning. It 
is allocated in the common electronics box to the 
whole platform. The ME also includes power 
conversion and conditioning to satisfy MEDUSA 
needs. The Instituto de Astrofísica de Andalucía 
(CSIC) is responsible of the design, construction and 
verification of the Main Electronics and the onboard 
SW. 
 
The Fig.4 shows a block diagram of the whole system 
 
 

 
Fig. 4: Block diagram for MEDUSA experiment 

In the case of MEDUSA, we can clearly define several 
functional blocks: 

− Optical block 
− Dust microbalance block 
− Water vapour microbalance block 
− Dust deposition and electrification stage block 

Power requirements prevent the different stages to be 
on at the same time. This forces the instrument to 
execute a sequence of actions, powering on a different 
set of functional modules in each time. Every stage has 
its own requirements and functional modes. This way, 
we could define several functional states, attending to 
the blocks working simultaneously. 

4.5. PSM for MEDUSA experiment 
According to the described before, we are going to 
distinguish several states of higher hierarchy. These 

 



 

states will perform the master state machine. Each of 
them has in turn a slave state machine inside. 
S0: No block working 
S1: Optical block and Dust Microbalance block 
working simultaneously 
S2: Water vapour microbalance block working 
S3: Dust deposition and electrification block working 
Inside each state, we can define a new FSM. For 
instance, for state S1 we have several sub states 
according to the working requirements: 
In Fig. 5 we can see the representation of this state 
machine in form of a state chart: 
 

 

 

Fig.  5: State chart diagram for MEDUSA instrument 

Functional blocks are drawn with squares, and states 
are drawn with circles. As we can see, the states S1 and 
S2 are master states from others FSMs. State S3 is not 
decomposed in any FSM. What we want to do is to 
have the possibility of changing every transition in the 
system. That would provide our design of flexibility. 
To apply the method, let’s center on the state S1: 
Optical system has to power laser on, does a calibration 
of the photo-detectors and then it starts to acquire. Dust 
deposition microbalance is working simultaneously 
with the optical system, as explained in section 4.1. 
According to our method, we can define a finite state 
machine to control this stage. Our machine would have 
five states: 

- Idle: No work  
- Laser: In this state, the laser must be power on 

according to safety and power requirements 
- Calibration: In this state we can determine the 

necessary offsets and thresholds to start the 
acquisition. The initial frequency of the 
microbalance is also read. 

- WaitParameters: In this state the system is 
waiting for some special parameters such as 
the power of laser or the maximum time for 
timeouts 

- Acquisition: Signals from optical detectors are 
read and processed periodically. in order to 
obtain the desired temporal resolution. If the 
signals are over a predefined threshold noise 
level, the corresponding data must be sent. If 
not, the signals are discarded. In this state, the 
dust microbalance starts working. 
 

As we have 5 states, the minimum number of bits to 
encode them is 3. 

 

4.5.1. Analysis of the inputs 
 

Let’s analyze the inputs to the finite state machine: 
Idle state: We can only leave the idle state if the user 
sends a special telecommand: telecommand “start”. 
This will be then an input to the machine. 
Laser state: As the laser is dangerous for human health, 
for safety reasons we need two telecommands to power 
it on: Arm laser, and then Init laser. There is a 
maximum enabled time between both telecommands. If 
the time is over, the laser does not power on, and sends 
a pulse to indicate the time out. Let’s call it “Laser 
timeout”. When the laser is powered, it sends a pulse to 
indicate that it has been on properly. Let’s call this 
pulse “Laser OK”. This pulse and “Laser Timeout” 
pulse will also be inputs to the machine. 
Calibration state: When the calibration process starts, it 
can be stopped by sending a command: “Go to safe”. 
This will automatically put the system on the idle state. 
Therefore, that command will be an input to the 
machine. If the calibration is already finished, it sends 
a pulse to indicate it: “Calibration end”. This will be 
other input to the machine. 
Wait parameters State: When the calibration ends, the 
system has to read some parameters from the memory 
before starting the acquisition. When the read is 
finished, the system sends a pulse to indicate it: 
“Parameters OK”. This will be other input to the 
machine. 
Acquisition state:  When the acquisition process starts, 
it can be stopped by the command “Go to safe” that 
has been already considered as an input to the FSM in 
the calibration state. If this command is not received, 
the acquisition will stop when the predefined run time 
is over. This will generate a signal “End run time”, 
that will be considered as an input to the FSM. In this 
state the dust deposition microbalance is working. If 
the frequency delta for the microbalance is over a 
determined threshold, the microbalance sends a signal 
“Dust Microbalance saturated”. This will be 
considered as an input to the machine. 
As conclusion, we have eight inputs to the system. But 
the maximum number of inputs that affect to the same 
state is three (for the acquisition state). As the inputs 

 



 

are all one bit wide, we can use only three bits to 
encode the inputs. 
Therefore, we can build the following table: 
 
Present 
state 

Encoding Inputs Next State 

Idle 000 000 Idle 
001 Laser 

Laser 001 
000 Laser 
001 Idle 
010 Calibration 

Calibration 010 
000 Calibration 
001 Idle 
010 WaitParameters 

WaitParam 011 000 WaitParameters 
001 Acquisition 

Acquisition 100 

000 Acquisition 
001 Idle 
010 Idle 
100 Idle 

Table 7: Encoding of states and transitions for S1 in 
MEDUSA experiment 

It is important to remark that the meaning of the bits 
for the inputs is different in each state. 

4.5.2. PSM encoding 
To encode this, we will put the first three columns in 
RAM address and the last column in the RAM data. 
For example, if we are in the laser state and we receive 
the input “LaserOK” (corresponding to the bit one of 
the inputs for the laser) we will have to point to the 
address: 

 
Address Data 

Laser state 
encoding 

Laser inputs 
encode 

Next state 
encode 

0 0 1 0 1 0 0 1 0 
Bit 
5 

Bit 
4 

Bit 
3 

Bit 
2 

Bit 
1 

Bit 
0 

Bit 
2 

Bit 
1 

Bit 
0 

Table 8: PSM Encoding for MEDUSA 

In this case, the bit 0 of the address encodes the input 
“Laser Timeout”. The bit 1 encodes the input “Laser 
OK”, and the bit 2 is not used (a change in this bit will 
be considered as a dummy transition). 
In the address “001010”, we will find the encoding for 
the next state: Calibration that is “010”. 
Therefore, we only need 6 bits for the address and 3 
bits for the data, as said in Eq.1 and we have a 
programmable finite state machine for the S1 state of 
our hierarchical finite state machine.  
In the case of MEDUSA instrument, we have used an 
external RAM with 20 bits for address, and 8 bits for 
data. As we only need 6 bits for the address and 3 for 
the data, the extra bits will be used to encode the higher 
states hierarchy, the Hamming bits for the EDAC, the 
science data, the context file where the parameters that 

establish the general behaviour of the instrument are 
stored, buffers for communication, etc .  

4.5.3. Implementation 
For analyzing and applying the memory contents, we 
need a programmable device. For MEDUSA case, we 
have chosen a FPGA (Field Programmable Gate 
Array). Therefore we need a manager and an address 
generator to control the machine. In the Fig. 6 we can 
see the control system for the state machine inside the 
FPGA. 
 

 
Fig.  6. FSM control implementation block diagram 

The external RAM stores the state machine. The block 
“system” is one of the blocks to be controlled. Each 
block working simultaneously will have its own 
manager. The manager knows which the current state 
is and can use the inputs to that state to decide whether 
to change the state or not. There is a multiplexer to 
select in each case which are the relevant inputs to the 
state. The manager controls the multiplexer by sending 
the current state.  
The address generator composes the address to read by 
knowing the current state and the current inputs. It is 
started by the manager, which will read the RAM data 
and put the system in the next state.  
 
5. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented a new method to 
control complex systems using a Programmable 
Hierarchical Finite State Machine stored in RAM. This 
method allows us to have a complete control of the 
whole system with minimum onboard software, and 
reduced memory size.  
The key idea is to use the address bus to encode states 
and transitions. The address bus encodes two items: 
one state and one input that have reaction with it. The 
datum for this address encodes the state to jump to.  

 



 

 

One of the main advantages of using this method is the 
possibility of using reduced memory size and the fast 
way of change the PSM, by only writing in RAM. 
Moreover, it is necessary to perform only one memory 
reading to change the state, without any extra selection 
algorithm. 
As future work, it is foreseen to test the goodness of 
the state machine in front of a microprocessor. To do 
that we are now developing new tests using a 
breadboard designer for MEDUSA experiment. We are 
going to use a FPGA with a 8051 core to compare it 
with the stored FSM and the manager. 
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