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OverviewOverview

• Definition
– Mars
– Titan
– Other Cold Places

• Missions operating in low T environments
– Past, current, future

• Effects of Low T on Probe Architecture & Subsystems
– Power, Electronics, Structural, Thermal, Mobility
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Definition: What (and Where) do we mean by Definition: What (and Where) do we mean by ““Low TemperatureLow Temperature””??

• ‘Low T’ is regarded as below -55°C (electronics limit)

• May be coupled with deep thermal cycling, e.g. Mars

• ‘Greenhouse effect’ relative to airless worlds
• Atmosphere acts as a heat conduction path – e.g. forced 

convection during parachute descent
• Heat loss issues may in fact be greater for a mission to an 

atmosphere than to a less cold, airless body
• The T of a probe element is in general not the same as the natural 

T of its environment (thermal design, heat capacity,…)
• May also need to avoid overheating, e.g. during cruise or early 

afternoon
• Moving from low to high T in humid atmosphere may produce 

condensation on probe
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Martian Atmospheric Temperature (1m above surface)Martian Atmospheric Temperature (1m above surface)

• Mars: -143°C to +27°C (surface); see ref models
– Large diurnal variation (e.g. Phoenix, Sol 13: -80°C to -32°C)

– Variations with latitude, topography, surface properties,…
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Mars Atmospheric ProfileMars Atmospheric Profile

• See also Mars Climate Database, Mars-GRAM, TES & THEMIS data,...

Nair et al. (1994)
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Mars Atmospheric Profiles from Spirit & OpportunityMars Atmospheric Profiles from Spirit & Opportunity

Withers and Smith, 2006
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Temperature Ranges for Worlds with AtmospheresTemperature Ranges for Worlds with Atmospheres

• Titan: -178°C (surface), ~-203°C (tropopause ~40km)
– Small diurnal variation
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Some Other Cold PlacesSome Other Cold Places

• Low T challenges also (in fact predominantly) faced by orbiter / 
flyby spacecraft, airless body landers and cooled optics / focal 
plane instruments

• Deep Space / Outer Solar System (Pioneer 10/11, Voyager 1,2, 
New Horizons, Galileo, Cassini, Rosetta, Juno,…)

• Cometary nuclei (Philae) (~-150°C)
• Lunar night (-160°C) & shadowed craters (-230°C)
• Cooled s/c assemblies (e.g. IR telescope optics & focal plane)
• Icy satellites

– Enceladus: -193°C (equator), -188°C (S pole)
– Europa: -180°C (surface)
– Triton: -235°C (surface)
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In Situ Missions to Worlds with AtmospheresIn Situ Missions to Worlds with Atmospheres
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Mars In Situ MissionsMars In Situ Missions

• 2MV-3 probe
• M-71 landers (Mars 2,3)
• M-73 landers (Mars 6,7)
• Viking Landers*
• Mars 96 Penetrators*
• Mars 96 Small Stations*†

• Mars Pathfinder
• Sojourner†

• *RTG power & thermal
• †RHUs

• Mars Polar Lander
• DS-2 Mars Microprobes
• Beagle 2
• MER (Spirit & Opportunity)
• Phoenix
• MSL*
• ExoMars†
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MER, MPL, PhoenixMER, MPL, Phoenix

• Warm Electronics Box 
(WEB) underneath an 
equipment deck
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HuygensHuygens

• Forced convection during descent
• Foam insulation (Basotect)
• RHUs
• Minimal sensors exposed

– HASI TEM, PWA
– SSP ACC-E, API-V, API-S, PER, THP, REF, DEN
– DISR apertures
– GCMS & ACP inlets

• Probe also had to cope with warm Venus flyby
• Higher than predicted heat losses around parts of the 

probe connected to the outside – thermal model 
underpredicted losses?
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Huygens Thermal DesignHuygens Thermal Design

J. Garry (after ESA)
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Future Missions to Low Future Missions to Low TT EnvironmentsEnvironments

• Mars
– Sample Return
– Balloon
– Polar caps
– Caves

• Titan
– Balloon
– Lander
– Ocean explorer

• Saturn, Uranus, Neptune entry probes

Kolowa et al., Extreme Environment Technologies for Future 
Space Science Missions. JPL D–32832, NASA, 2007. 

http://solarsystem.nasa.gov/multimedia/ 
downloads/EE-Report_FINAL.pdf

http://solarsystem.nasa.gov/multimedia/%0Bdownloads/EE-Report_FINAL.pdf
http://solarsystem.nasa.gov/multimedia/%0Bdownloads/EE-Report_FINAL.pdf
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Effects of Low T on Probe Architecture & SubsystemsEffects of Low T on Probe Architecture & Subsystems

• Low T has consequences for many subsystems:
– Power (Batteries, RTGs, Solar Arrays, Fuel cells, Flywheels, 

Capacitors)
– Electronics
– Communications
– Structure
– Thermal
– Mobility
– Propulsion
– …

• Probes convert stored or absorbed energy to heat, RF 
emission and mechanical work
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Effects of Low Effects of Low TT on Poweron Power

• Increased efficiency at low T, so fall off vs. r from Sun 
goes not as r-2 but r-1.7.

• Lower solar intensity reduces temperature, but forces 
larger area arrays
– Practical limit being pushed by LILT (Low Intensity, Low T) array 

technology
– Beyond that limit, nuclear is only option (RTG, MMRTG, Stirling 

Cycle RTG)
• Heat from RTGs is a useful by-product in a low T 

environment, for keeping electronics (and balloon gas) 
warm

• Batteries stop working at low T; current limit is around - 
40°C (Li-ion) BUT new technologies under development

• See sections 4.3.5 and 5.2.4 of JPL report
• Performance metrics
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Effects of Low Effects of Low TT on Electronicson Electronics

• Sections 4.3.2 and 5.2.2 of JPL report
• Limited commercial demand for components
• Thermal cycling – wear on solder joints
• Performance metrics
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Effect of Low Effect of Low TT on Structureon Structure

• Low T makes many materials brittle
• Differential thermal expansion – degradation of joints
• Implications for

– Structural components
– Parachute systems
– Balloon envelopes

– Icy satellite penetrators
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Effects of Low Effects of Low TT on Thermal Designon Thermal Design

• Heat loss shortens a mission and/or increases the 
resources needed to maintain temperature
– Solar absorbers (e.g. Philae, Beagle 2)
– Insulation (e.g. Basotect foam in Huygens, aerogel in 

Sojourner)
– RHUs (238Pu, 210Po)
– Electrical power
– Phase-change materials
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Effects of Low Effects of Low TT on Mobilityon Mobility

• Mechanisms – operation of gears and bearings below - 
130°C limited to 1,000,000 cycles, and drive and 
position sensors limited to -130°C

• Cold electronics can greatly simplify cabling to wheels, 
etc.

• Sections 4.4.2, 4.4.4, 5.3.2, 5.3.4 of JPL Report
• Performance metrics
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ConclusionsConclusions

• Coping with low T is less challenging than coping 
with high T
– Heating easier than cooling

• Importance of good models
• Trade-off between Low T technologies (High cost? 

Lower TRL? Worse performance?) and providing 
(where feasible) a warm environment (e.g. ebox)

• Current and foreseen architectures still centred 
around warm compartment for battery & electronics, 
with insulation and heating

• Many sensors and subsystems need to be outside, 
however

• What new measurements or probe architectures 
might be enabled by low T technologies?

• What testing strategy for low T atmospheric 
environment?
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