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Sample Return Missions 

Luna 16, 20, 24 (1970s) Stardust (1999-2006) Genesis (2001-2004) 

Hayabusa (2003-2010) 
Planned Missions: 
• Hayabusa 2 (asteroid) 
• OSIRIS-Rex (asteroid) 
• Chang’e 5 (Moon) 
• MarcoPolo-R (asteroid) 
• Luna-Grunt 
• MSR 
• Mars-Grunt 
• Chinese MSR 
• OpenLuna (private) 

Fobos-Grunt (2011-2014) 
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Sample Return Missions (Cont.) 

Proposed MSR Campaign [Mattingly & May, Ref. 6] 
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Earth Entry Vehicle (Model) 

Design is based on the MSR EEV 
design which is driven by minimizing 
risk associated with sample 
containment (no parachute and 
passive aerodynamic stability). 

– By utilizing a common design 
concept, any sample return 
mission, particularly MSR, will 
benefit from significant risk and 
development cost reductions. 

– The design provides a platform by 
which technologies, design 
elements, and materials can be 
flight tested prior to 
implementation on MSR. 
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Earth Entry Vehicle (Environment) 

Altitude 
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TPS 

Impact 

3 Landing Ellipse 

The EEV must survive extreme mechanical 
and thermal loads. 

Aerodynamic 
Stability 

Thermal Soak 
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M-SAPE (Design Structure Matrix) 
EEV design is a complex & multidisciplinary activity. 
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M-SAPE (Architecture) 
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M-SAPE (Integration) 

M-SAPE Integration [Refs. 4 & 5]: 
• Uses python to automate and streamline analysis process 

• Relies heavily on the object-oriented programming capabilities available 
in Python 

• Reduces the errors resulting from manual data transfer among discipline 
experts 

• Enables an environment that a low fidelity system analysis and trade 
study can be performed in hours (not days or weeks) with sufficient 
hooks to perform high-fidelity analysis in days. 

• Uses existing software components, especially open-source software, to 
avoid unnecessary software development and licensing issues 

Integration 
(Python) 
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M-SAPE (Database) 

Database: 

• Uses flat files (CSV) 

• Uses MySQL (My SQL) as a database engine. 
– The world's most widely used open source relational database 

management system (RDBMS). 

– Available on many platforms. 

– Used by Wikipedia, Facebook, Twitter, YouTube, … 

• Uses Python interface (MySQLdb) on the front-end and PHP 
on the backend. 

• The MySQL module has not been fully implemented yet . 

Database 
(Python) 



Jamshid.A.Samareh@nasa.gov 12 

M-SAPE Disciplines (Geometry) 

Geometry (Two Models): 
• Simplified model (Matlab) 

• CAD model developed in 
Pro/Engineer Wildfire 3.0 

– Constructed from a series of 
curves in a ”skeleton” model 

– Automated vehicle model 
generation 

– Generated mass properties at 
the component and assembly 
levels 

– Has two generalized 
configurations ( MSR & Non-
MSR) 

IMPACT FOAM 

IMPACT SHELL 

AFT TPS 

AFT STRUCTURE 

IMPACT FOAM 

PAYLOAD 

SHELL FOAM 

SKIRT 

FWD STRUCTURE 

FWD TPS 

AL HONEYCOMB 

MSR Concept 

Vehicle 
(Matlab) 
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M-SAPE (Mass Sizing & Packaging) 

Vehicle [Refs. 4 & 5]: 
• Utilizes a simplified parametric 

vehicle (CAD) model. 

• Performs scaling by specified 
relationships determined through 
past experience, analysis, and/or 
mission specific requirements 

• Uses MMEEV parametric model 
to determine the mass properties 
of the vehicle, across the entire 
vehicle trade space 

• Uses a simplified 1D impact 
dynamics to size absorbing 
material. 

 

 

Vehicle 
(Matlab) 

MSR Concept 

Non-MSR Concept 
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M-SAPE (Flight Mechanics) 

POST II [Ref. 9]: 
• POST II is a generalized point mass, rigid body, discrete parameter 

targeting and optimization trajectory simulation tool originally 
developed in the 1970’s for Space Shuttle Program. 

• It has become an industry standard and has been transferred 
and/or utilized by hundreds of organizations in government, 
industry, and academia. 

• POST-II has been used for many projects ( MER, Genesis, Stardust, 
Mars Phoenix Lander, MSL, Orion, …). 

• Atmosphere Model and Winds EarthGRAM09. The planet model is 
an oblate planet based. 

• Simulation is unguided and ballistic. 

 

 

 

 

 

 

POST 
(EXE) 
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M-SAPE (Aero) 

Aerodynamics [Glaab X-Cutting Tech]: 
• The aerodynamics database of MMEEV uses a 

range of sources, including DSMC, CFD, wind 
tunnels and ballistics range data. 

• Free-molecular static aerodynamics based on the 
collisionless DAC calculations.  

• Hypersonic static aerodynamics are computed 
using LAURA code with the perfect gas air model. 

• Low supersonic and high subsonic static 
aerodynamics were measured in the Ames 2x2 ft 
transonic wind tunnel by W. Marco. 

• Transonic and supersonic dynamics from Viking 
Project. 

• Low subsonic statics and dynamics obtained at 
NASA Langley in the Vertical Spin tunnel (VST) by 
Mitcheltree. 

 

 

Aerodynamics at Off-Nominal Attitude 



Jamshid.A.Samareh@nasa.gov 16 

M-SAPE (Aerothermodynamics) 

Aerothermodynamics: (Aliaga 
et al. At IPPW-10 Poster) 
• Convective heating is based Sutton-

Graves [Ref. 10] equations that has 
been anchored with CFD solutions 
(DPLR, Data Parallel Line 
Relaxation). The correction factor 
was found to be 1.33 [Ref. 11]. 

• Radiative heating is based on 
Tauber-Sutton model [Ref. 12] with 
no margin. 
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M-SAPE (TPS) 

Thermal Protection System [Refs. 13, 16 & Sepka et al.  

IPPW-10 Poster]: 
• An engineering approach which is CFD anchored was used to quickly characterize 

aerothermodynamic quantities pertinent to TPS design such as heat flux, heat 
load, and surface pressure.  

• The MMEEV aeroheating environment was estimated across the entire mission 
and vehicle trade space. 840 trajectories total – of these approximately 120 
trajectories had no recession and were not used as part of the correlation 

• Correlation developed for TPS thickness based on FIAT modeling of TPS response 
at the forebody stagnation point. 

• Constraints of an adiabatic back wall and maximum back wall temperature of 
250C. 

• Available MERs are Phenolic Impregnated Carbon Ablator (PICA) and Carbon 
Phenolic (CP) atop Advanced Carbon-Carbon for heatshield, and Silicone 
Impregnated Reusable Ceramic Ablator  (SIRCA), Acusil  II, SLA-561V, and LI-900 
for the backshell. 

 

TPS 
(Python) 
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M-SAPE (Impact Model) 
Impact 

(Matlab) 

Simplified Impact Model [Ref. 8]: 
• Crushable foam-filled cellular 

structure  

• Crushing load is primary 
controlled by cell wall thickness 
& foam strength 

• Rigid inner shell provides load 
reaction while protecting OS 
from stress concentration by 
cell walls 

• Outer shell is designed for 
penetration resistance and load 
distribution 

• Foam will also provides thermal 
insulation 

 

 

 

Kellas [Ref. 8] 
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M-SAPE (Impact Model) 
LSDYNA 

(EXE) Perino et al.  
IPPW-10 Poster 
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M-SAPE (Structural Sizing) 

Structural Sizing Loads: 
• Inertial Launch Loading 

• Structure Born Vibration Load 

• Random Acoustic Launch 

• Inertial Reentry 

• Module not fully implemented 

NASTRAN 
(EXE) 

Perino et al.  
IPPW-10 Poster 
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M-SAPE (Thermal Soak) 

Thermal Soak [Ref. 14, , Agrawal et al. 
IPPW-10 Poster & Glaab X-Cutting Tech]: 

• Vehicle is subjected to severe thermal 
load. 

• The survival of the entry vehicle and 
successful payload recovery are key to the 
success of sample return missions. 

• Thermal soak analysis becomes very 
important to predict the survivability of 
the payload as the recovery process could 
take several hours. 

• The commercial package, Marc-Mentat, 
was used to analyze thermal soak 
behavior 

• The FE model was created based on a 
simplified MMEEV geometry and assumed 
to be 2-D axi-symmetric. 

 

Th. Soak 
(Python) 

Sample Thermal Soak Results 
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M-SAPE (Report) 
Report 

(Python) 



Jamshid.A.Samareh@nasa.gov 23 

Sample Results 

vehicleInputParameters.csv 
Payload Mass (kg) 3.6

Payload Diameter (m) 0.16

Input Vehicle Diameter (m) 0.9

Vehicle Nose Radius / Vehicle Base Radius 0.72222

Input Vehicle Shoulder Radius / Vehicle Base Radius 0.07

MSR Flag Yes

Entry Velocity (m/s) 11500

Entry Flight Path Angle (deg) -25

Convective Heat Rate Model  SuttonGraves

Convective Heat Rate Margin 1.33

Radiative Heat Rate Model  TauberSutton

Radiative Heat Rate Margin 1

Backshell TPS Type SLA-561V

Forebody TPS Type CP

Component Mass Margin 0.3

Mass Convergence Criterion 1.00E-03

Max Number of Iterations 20
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Sample Results (MSR & Galahad)  

Galahad 

Parameters circa 2010 M-SAPE

Total mass, kg 32.1 31.9

Maximum entry load, g's 33.9 34.7

Total peak heat rate, W/cm2 400 441

Total heat load, kJ/cm2 11.2 12.0

PICA thickness, cm 2.3 2.21

Time of flight, sec 595 673

Impact velocity, m/s 31 26.7

Impact load, g's 470 456

Impact stroke, cm 3.4 2.4

MSR 

Parameters circa 2008 M-SAPE

Diameter, m 0.9 0.9

Mass, kg 44 45.7

Entry velocity, km/s 11.56 11.5

Peak heating, w/cm2 1500* 1302

Peak deceleration g's 130 134

Terminal velocity, m/s 41 39.8

*Peak entry heating limit
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Adjusted Shoulder Radius (m) Forebody TPS Mass (kg) Max Stagnation Pressure at Density (kg/m^3)

Adjusted Shoulder Radius / Base Radius Forebody TPS Material Max Stagnation Pressure at Geodetic Altitude (m)

Adjusted Vehicle Diameter (m) Forebody TPS Message Max Stagnation Pressure at Relative Velocity (m/s)

Aeroshell Type Forebody TPS Thickness (cm) Max Stagnation Pressure at Time (s)

Aft Carrier Structure Mass (kg) Forward Carrier Structure Thickness (cm) Max Total Heat Rate (Margined) (W/cm2)

Aft Carrier Structure Thickness (cm) Goulard Number Max Total Heat Rate (Margined) at Density (kg/m^3)

Aft TPS Message Impact Foam Density (kg/m3) Max Total Heat Rate (Margined) at Geodetic Altitude (m)

Aftbody Angle (deg) Impact Foam Mass (kg) Max Total Heat Rate (Margined) at Relative Velocity (m/s)

Aftbody TPS Mass (kg) Input Shoulder Radius (m) Max Total Heat Rate (Margined) at Time (s)

Aftbody TPS Material Input Shoulder Radius / Base Radius Nose Radius (m)

Aftbody TPS Thickness (cm) Input Vehicle Diameter (m) Nose Radius / Base Radius

Attached Structure Depth (m) Ixx (kg-m2) Number of Iterations

Ballistic Coefficient (kg/m2) Iyy (kg-m2) Payload Density (kg/m3)

Convective Heat Load (Margined) (J/cm^2) Izz (kg-m2) Payload Diameter (m)

Convective Heat Rate Margin Lid Density (kg/m3) Payload Height (m)

Convective Heat Rate Model Lid Height (m) Payload Mass (kg)

Converged Lid Insulation Mass (kg) Primary Structure Mass (kg)

Crush Load Limit (g's) Lid Radius (m) Primary Structure Thickness (cm)

Date and Time MSR Mode Radiative Heat Load (Margined) (J/cm^2)

Density of AFT Carrier Structure (kg/m3) Mass Convergence Criterion (kg) Radiative Heat Rate (coupled) / Radiative Adiabatic

Density of AFT TPS (kg/m3) Mass Margin (%) Radiative Heat Rate Margin

Density of Body Foam (kg/m3) Max Aftbody Heat Rate (W/cm2) Radiative Heat Rate Model

Density of FWD Carrier Structure (kg/m3) Max Convective Heat Rate (Margined) (W/cm^2) Required Stroke (cm)

Density of FWD TPS (kg/m3) Max Convective Heat Rate (Margined) at Density (kg/m^3) Run Name

Density of Impact Shell (kg/m3) Max Convective Heat Rate (Margined) at Geodetic Altitude (m) Stroke Margin

Density of Wing Insulation (kg/m3) Max Convective Heat Rate (Margined) at Relative Velocity (m/s) Structure Material

Downrange (km) Max Convective Heat Rate (Margined) at Time (s) Terminal Velocity (m/s)

Drag Coefficient at Impact Max Dynamic Pressure (Pa) Time of FLight (s)

Entry Flight Path Angle (deg) Max Entry Load (Earth g's) Total Aftbody Heat Load (J/cm2)

Entry Velocity (m/s) Max Forebody Heat Rate (W/cm2) Total Entry Mass (kg)

Estimated Impact Load (g's) Max Payload Temperature (C) Total Heat Load (Margined) (J/cm2)

Foam Density (kg/m3) Max Radiative Heat Rate (Margined) (W/cm^2) Trajectory Model

Foam Efficiency Max Radiative Heat Rate (Margined) at Density (kg/m^3) Vehicle CG Location from Nose (m)

Foam Thickness (cm) Max Radiative Heat Rate (Margined) at Geodetic Altitude (m) Vehicle Height (m)

Forebody Carrier Structure Mass (kg) Max Radiative Heat Rate (Margined) at Relative Velocity (m/s) Vertical C.G. Location (X/D)

Forebody Cone Angle (deg) Max Radiative Heat Rate (Margined) at Time (s) Vertical C.G. Location (m)

Max Stagnation Pressure (atm) Wing Insulation Mass (kg)
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Sample Results (MSR) 
(Trade Space, 2457 Runs) 
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Summary 

• An integrated system analysis capability for Earth entry 
vehicle was presented. 

• The model was based on MSR concept. 

• The system allows: 
– Single analysis 

– What if scenarios (e.g., payload density) 

– Technology evaluation (e.g., TPS concepts & energy absorbers) 

– System sensitivity analysis 

– System trade space analysis 

– System level Monte Carlo analysis (not fully implemented yet) 

• M-SAPE is still in development. 

• The plan is to extend the current system for general EDL 
applications that include additional planets. 
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