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Ablative Thermal Protection Systems (TPS)

Start of space flight
High-speed reentries

! until today All European missions:
ablative heat shields

Apollo 10 capsule

(May 26, 1969)

Soyuz capsule

(1967-today)

Atm. Reentry Demonstrator

(1998)
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Ablative Thermal Protection Systems (TPS)

Start of space flight
High-speed reentries

! until today Future: Sample returns
High-speed reentries

Apollo 10 capsule

(May 26, 1969)

Soyuz capsule

(1967-today)

Mars Science Laboratory (2012)

Courtesy: NASA
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New Porous, Lightweight Ablators

Stardust probe (2006, 12.9 km/s, [1])

New low weight materials (PICA, ASTERM) [2, 3]

New missions (Asteroid / Mars sample return)

Modeling tools inherited from Apollo program
(1960s) [4]

! new material response models [5]

! qualification of materials & validation of models required [6]
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Complex Multiphysics - Multiscale Problem
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Complex Multiphysics - Multiscale Problem
Research Strategy and Objectives

VKI: Analysis in High-Enthalpy Plasma Flows

  

VUB: Multiscale Characterization

! Gas phase: pyrolysis gas chemistry

transport phenomena & radiation in the boundary layer

! Material: thermal performance and internal degradation

char ablation zone and degradation of carbon fibers
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Research Frame and Goals

) Methodology to characterize material response & gas-gas / gas-surface
interaction of innovative ablators

) Model validation and flight extrapolation

2

EXPERIMENTAL DATA

PHYSICO-CHEMICAL 
MODELS

COMPUTATIONAL
METHODS

) Combining basic ingredients for prediction in aerospace science
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Local Heat Transfer Simulation (LHTS)
! Plasmatron design based on LHTS methodology
! Well characterized plasma flow through numerical-experimental procedure
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1.2 MW Inductively Coupled Plasmatron

Plasmatron facility and artistic impression of plasma torch

Originally designed for Hermes project
(Ceramic Matrix Composites (CMC) ! ablation)

Gas: Air, N2, CO2, Ar

Power: 1.2 MW (most powerful ICP in the world)

Heat-flux: up to 10MW/m2 (superorbital re-entry)

Pressure: 10mbar - 1 atm
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1.2 MW Inductively Coupled Plasmatron
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Plasmatron test chamber showing experimental setup and torch exit

Originally designed for Hermes project
(Ceramic Matrix Composites (CMC) ! ablation)
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Power: 1.2 MW (most powerful ICP in the world)
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1.2 MW Inductively Coupled Plasmatron

movie loading...
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Experimental Techniques for Ablation Characterization

!test!sample!

plasma!torch!
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internal temperature histories

High-speed-camera

! in-situ recession analysis
! in-situ determination of

spectrometer probing
locations

Optical emission spectroscopy
temporally and spatially resolved
radiation profiles in the boundary
layer

! chemical composition
! temperature estimation
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Materials of Investigation

Carbon fiber preform (Mersen Scotland Holytown Ltd.)

chopped carbon fibers, fully carbonized no phenol content

density: 180-210 kg/m3, porosity: 90%

AQ61 (EADS Astrium ST)

low density carbon-phenolic

made of short carbon fibers impregnated with phenolic resin

! compacted & pyrolysed

low resin content

ASTERM (EADS Astrium ST)

low density carbon-phenolic

rigid graphite felt impregnated with phenolic resin

! polymerization

precursor similar to carbon fiber reform
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Contaminated Boundary Layer
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CN Spatial Radiation Profiles in Boundary Layer
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We are interested in temperature and concentration profiles in the boundary layer
! molecular radiative signature of CN violet system
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CN Radiation Simulation for Temperature Estimation
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Experimental spectrum

Vibrational levels variations for di↵erent chamber pressures (close to wall)
! temperature estimation using simulation tool SPECAIR [8]

Deviation from thermal EQ w.r.t. T
rot

and T
vib

(Boltzmann distribution!)

Evident for all three materials (Preform, AQ61, ASTERM)

Only electrically excited states are probed (CN B-X)

! Check for various distances o↵ the surface
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Boundary Layer Temperature Profile

0 1 2 3 4 5
 2000

 4000

 6000

 8000

10000

12000

14000

16000

18000

20000

distance from surface [mm]

te
m

pe
ra

tu
re

 [K
]

ps = 15mbar, TS = 2130K

 

 
Trot
Tvib

0 1 2 3 4 5
 2000

 4000

 6000

 8000

10000

12000

14000

16000

18000

20000

distance from surface [mm]

te
m

pe
ra

tu
re

 [K
]

ps = 100mbar, TS = 2097K

 

 
Trot
Tvib

Deviation from thermal EQ close to the wall (low pressures)

Equilibrating e↵ect throughout BL

Mainly equilibrium condition at high pressure (right)

) AIAA-2013-2770

IPPW-10 15 / 24



Post-Test Visual Inspection

after ablation in air

Macroscopic char identification

Symmetric charring of AQ61

after ablation in N

2

Black char over whole surface

Symmetric charring of AQ61

IPPW-10 16 / 24



SEM Inspection: Stagnation Point (Air Ablation)

Carbon Preform

icicle shaped fibers after ablation in
air

icicle angle and depth of ablation
depend on oxygen di↵usion [9]

AQ61

icicle shaped fibers & high porosity
(charred resin sparely identified)
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SEM Inspection: Stagnation Point (Air Ablation)

Carbon Preform

δe,$COe$

z"""CO(z)"

z=0$

Ablation Investigations in the Inductively Coupled

VKI Plasmatron Facility

B. Helber⇤, O. Chazot†, A. Hubin‡ and T. Magin§

Ablation tests of a carbon fiber preform are carried out in the VKI Plasmatron facility in

air plasmas to study the e↵ect of di↵erent test chamber pressures on the oxidation behavior

of the material and erosion of the carbonic fibers. A micro-scale analysis is performed of

post-ablation samples by means of Scanning Electron Microscopy to examine the fiber

degradation at the carbon fiber length scale. The preform consists of short cut carbon

fibers, interconnected in a matrix produced by the carbonisation of phenolic resin with the

fibers being 2D randomly oriented, with both configurations tested: through-the-thickness

direction parallel and perpendicular to the flow. (1.5 kPa) a higher recession rate was

observed and micrographs of ablated fibers show strong degradation along the whole fiber

length (⇠600 µm) opposed to pure icicle shaping.

Nomenclature

Roman symbols

C concentration mol/m3

D di↵usion coe�cient, m2/s

fs sampling frequency, Hz

H enthalpy, J/kg

k reactivity constant, m/s

Kn Knudsen number, -

Lab ablation depth, m

M molar mass, kg/mol

m mass, kg

ṁ0 normalized mass loss rate, kg/(m�1.5sPa0.5)

R ideal gas constant, J/mol/K

RM model radius, m

p pressure, Pa

q̇ heat flux, W/m2

r recession, m

s specific surface area, m2/m3

t time, s

T temperature, K

u flow velocity, m/s

v recession velocity, m/s

Greek symbols

�ERSA e↵ective reactive surface-area coe�cient, -

� reaction rate probability, -

⇢ density, kg/m3

⌦ collision integral, -

Sub- and Superscripts

cw cold wall

e boundary layer edge condition

eff e↵ective

f fiber

s static

Acronyms

ERSA E↵ective Reactive Surface Area

HSC High Speed Camera

ICP Inductively-Coupled Plasma

IR Infra Red

LTE Local Thermodynamic Equilibrium

PICA Phenolic Impregnated Carbon Ablator

TPS Thermal Protection System

⇤Ph.D. Candidate, Aeronautics & Aerospace Department, von Karman Institute, Belgium, AIAA Student Member.
†Associate Professor, Aeronautics & Aerospace Department, von Karman Institute, Belgium, AIAA Member.
‡Professor, Research Group on Electrochemical and Surface Engineering, Vrije Universiteit Brussel (Belgium)
§Assistant Professor, Aeronautics & Aerospace Department, von Karman Institute, Belgium, AIAA Member.
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CO0$

10#μm#

icicle shaped fibers after ablation in
air

icicle angle and depth of ablation
depend on oxygen di↵usion [9]

AQ61

icicle shaped fibers & high porosity
(charred resin sparely identified)
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SEM Inspection: Stagnation Point (Air Ablation)

Carbon Preform

0.22 mm

5.5 μm

icicle shaped fibers after ablation in
air

icicle angle and depth of ablation
depend on oxygen di↵usion [9]

AQ61

icicle shaped fibers & high porosity
(charred resin sparely identified)
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SEM Inspection: Ablation in Nitrogen

Stagnation Point

  

‘cross filaments’ found on the surface
after ablation in N

! production of strong & stable C-C
bonds (catenation?)

Side- & Backface

black carbon (similar to soot)
deposited at surface
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Combined Numerical/Experimental rebuilding Procedure

CFD simulation (VKI ICP code)

Coupled(
domain( Boundary(layer(parameter(

Navier3Stokes3domain(EM3field(
domain(

Experiments

M"<<"1"
TPS"sample"

qw,$Tw,$ps,$pd$

Boundary layer solver

Input: Boundary layer parameter (LTE CFD computation) & measurements
from experiments

Procedure: Iteration on boundary layer edge temperature T
e

:
) qn

w

= q
(exp)
w

= q
w

(�, T
w

, p
e

, h
e

,�, ...)

Output: Edge enthalpy H
e

, boundary layer chemistry, (catalycity)
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State of the Art Ablation Modeling

Common strategy (Kendall et al.[4]):

Mass transfer flux Advection flux 
Flow field 

Control Volume 

Pyrolysis  gases  B’g 

Char flux  B’c 

Material field 

Assumptions:

Material and flow decoupled
! Control volume approach

Chemically active surface
! carbon char reacts with oxygen

Chemically active species from
! pyrolysis of decomposing material
! edge of boundary layer (equilibrium
chemistry)
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1D Stagnation Line Description w/ Surface Ablation
(Poster: A. Turchi)

Approach:

SPECIES SURFACE MASS
BALANCE (SMB)

SURFACE ENERGY BALANCE
(SEB)

Table: Preliminary results on a Carbon Preform (no phenol content)

T
w

, K ṁ
c

, kg.m�2.s�1

Experiment (q̇
cw

= 3MW/m2, p
s

= 20 kPa) 2783 0.0155 0.0175
0.0111

Isothermal ablation w/ nitridation 2783 (imposed) 0.0202
SEB ablation w/ nitridation 2198 0.0201
SEB ablation w/o nitridation 2174 0.0152
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1D Stagnation Line Description w/ Surface Ablation
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Reconstruction of experiments

Gas mixture properties:
Thermo-chemistry library
MUTATION++ (Poster: J.B.
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Application to Mission Design (Presentation: I. Sakraker,
G. Baillet)

QARMAN: QubeSat for Aerothermodynamic Research and Measurements on AblatioN
(Re-entry cube-sat as part of the VKI QB50 project)

) TPM selection campaign (heat load reproduction)
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Conclusions and Perspectives

In-situ observation: Recession rates, sample temperature response, boundary layer
thermo-chemistry (AIAA-2013-2770)

Post-test Analysis Char layer examination at carbon fiber length scale:
Mechanisms of fiber oxidation in di↵usion-limited regime
Carbon deposition on surface in N2 environment

1D-Code Comparison: Stagnation line description matches experimental results within
uncertainty

! More conditions for additional comparison / validation
! Extend to carbon-phenolic ablator (loose coupling with material

code)
! Goal: Comparison of BL chemistry and spectroscopy data

(profiles, mole fractions) for code validation
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