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Abstract 
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• Initial results presented here 
quantify the turbulent heat-
transfer augmentation due to 
surface micro-roughness: 
– Micro-roughness patterns form 

under laminar-flow ablation 
conditions early in the entry (high 
altitude, low Reynolds number) 

– Roughness interacts with the 
surface shear layer to increase 
heat transfer and shear 

• Experiments are underway in the NASA Ames hypersonic 
ballistic range to measure the effects of surface roughness 
on turbulent convective heat transfer to spherically-blunted 
large-angle cones. 

Composite of Two Flights: M = 8.5 
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Elevation, µm 

Statement of the Problem 

• Probes to outer planets (and Venus) will require ablative 
thermal protection systems (TPS) to survive extreme heating 
environments 

• Ablation of TPS materials under laminar-flow (high-altitude, 
low-pressure) conditions results in surface micro-roughness 
characteristic of the material 
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Example Micro-roughness of 
Ablated Chop-Molded Carbon 
Phenolic 
 
Ablated in the Ames IHF Arcjet 
courtesy: M. Stackpoole, NASA Ames 
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Turbulent heat transfer 
augmentation due to 

surface micro-roughness 

Statement of the Problem 

• Surface micro-roughness can increase aerodynamic heating 
(and ablation rates) by 

– inducing transition to turbulent flow  
– enhancing turbulent  

heating 

• Turbulent heat transfer  
augmentation 

– is a boundary layer  
flow phenomenon  

– requires roughness  
sizes taller than the  
viscous sublayer 
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• For densely-packed roughness elements (sand grain 
roughness), the heating augmentation factor correlates with the 
roughness Reynolds number, which is proportional to the ratio 
of the roughness height to the viscous sublayer thickness 
 

 
Rek

* = ρwUτ/µw ∝ k/δs 

 
where ρw, µw are the fluid density and viscosity at the wall,  
Uτ = (τw/ρw)1/2 is the smooth-wall friction velocity,  
τw is the surface shear stress, 
δs is the sublayer thickness, and 
k is the mean roughness height 

 

Statement of the Problem 
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Statement of the Problem 

Ablation under turbulent flow conditions can form macro-
roughness patterns (not considered in current tests) 
– These result from fluid-material interactions and form complex 

patterns not easily characterized by a single parameter like k 

– Macro-roughness affects heating mainly through changes in the 
inviscid flow rather than through changes in the boundary layer 
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Example Patterns formed on 
 Wind Tunnel Model Ballistic Range Model 
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Objectives of the Experiments 

• Obtain data set of turbulent heat-transfer augmentation due to 
surface micro-roughness: 

– 45o sphere-cone representative of Outer Planet probe 
geometry (nose radius = ½ base radius) 

– Test conditions selected to produce smooth-wall turbulent 
heating rates representative of an atmospheric entry at Saturn 
or Uranus (stagnation heat flux of 0.5 - 3 kW/cm2) 

– Initial tests conducted in air in order to allow comparison with 
existing wind-tunnel data 

• Relate results to computed flight conditions 

Wilder, Prabhu, and Reda 10th International Planetary Probe Workshop 8 



Entry Systems and Technology Division 

Wilder, Prabhu, and Reda 10th International Planetary Probe Workshop 9 

Experimental Approach 

Experiments were conducted in the Hypervelocity Free Flight 
Aerodynamic Facility at NASA Ames Research Center 
– 23 m long enclosed flight range with 16 optical measurement 

stations 

– Provides the capablility of testing in different atmospheres: 
Air, N2, CO2, Ar, H2/He, and other gases 

– Test-section pressures from 1 atm to ~0.0001 atm 

– Capable of testing at speeds up to ~8 km/s  

• Top speed depends on choice of model launcher and projectile 
mass 

• Largest hypervelocity model launcher diameter = 3.8 cm 
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Thermal Cameras 

High-Speed Digital Video Camera 

Luminous Wake 

Gun Muzzle Blast 
Model in Flight 
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Ballistic Range Facility 
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Powder Chamber 

Pump Tube (18 m) Launch Tube 
(10 m) 

High-Pressure Coupling 

Test Section (23 m) 

Sabot-Separation Tank (10.13 m) 

Flight 

High-Speed Thermal 
Cameras 

Mirror 
Mirror 

Mirror Model 

Capability to Independently vary P∞,V∞, and test gas 
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Experimental Approach 

• Test conditions selected to produce smooth-wall 
convective heating rates representative of atmospheric 
entry to Saturn or Uranus 

• Air selected as test gas 
– To allow validation of test methodology against available 

data 
• Surface micro-roughness produced by grit blasting 

– Roughness size controlled by grit-size selection 

• Models fabricated of non-ablating materials to ensure 
surface roughness character did not change during flight 

– Titanium or stainless steel 
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Ballistic Range Models 
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Ballistic Range Model in Flight 
45o Sphere-Cone Forebody 

RN 

45o 

D 

Saturn Probe:  RN = 0.25 m, D = 1 m 
Uranus Probe: RN = 0.19 m, D = 0.76 m 

RN = 0.762 cm, D = 3.3 cm 
RN = 3% Saturn Probe RN 
RN = 4% Uranus Probe RN 

Typical Probe Geometry 
45o Sphere-Cone 
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Set of Ballistic Range Models 
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Distributed roughness on each nosecap used to trip the 
flow, extended to sphere-cone tangent point, s/RN = 0.78 

Mean roughness height on each conic frustum: 
k =  1.0 µm 4.8 µm  7.8 µm  13.9 µm  17.4 µm  22.8 µm 

kN ≈ 16 µm 
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Roughness Characterization 
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Each roughness distribution was measured using 3D non-contact 
profilometry (white-light interferometry) 

Cone k� = 4.8 µm 
Nose k�N = 16 µm 

Cone k� = 17.4 µm 
Nose k�N = 15 µm 
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Roughness Characterization 
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• Surface roughness maps topographically analyzed 

• Roughness distributions characterized by mean peak-to-
valley height, k, of roughness elements 

Distributions of Roughness Element Heights 
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Experimental Approach 

• Each model of a set was flown at the same nominal conditions 

• Convective heat flux measured in flight 

– global surface temperature distributions captured at multiple 
points along the flight trajectory using high-speed infrared 
cameras 

• Heat-flux augmentation factor, qr/qs, determined 
– qs = smooth-wall turbulent convective heat flux 
– qr = rough-wall turbulent convective heat flux 

• Roughness Reynolds number, Rek
*, determined for each test 

from measured k and computed boundary-layer properties 



Entry Systems and Technology Division 

Wilder, Prabhu, and Reda 10th International Planetary Probe Workshop 17 

Thermal Imaging Example 
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Test Section (23 m) 

Flight 

High-Speed Thermal 
Cameras 

Mirror 
Mirror 

Mirror Model 

Infrared Image of Model in Flight 

Surface Temperature Distribution 

Convert IR intensity 
to Temperature, 
Map to Surface 
Grid 

Boundary-layer 
Transition 
Front 
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All Smooth 

Example Heat Flux Profiles 
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Smooth Cone 
Rough Nose 

All Rough 

Rough Nose   Smooth Cone 

Boundary Layer 
Transition 
Location on 
Rough 
Nosecaps 

Each Image averaged circumferentially to give mean profile 
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Results: Global Heat Flux Distributions 
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2000 2500 3000 3500 4000 

Heat flux, W/cm2 

V∞ = 3 km/s (M∞ = 8.5), P∞ = 0.15 atm (air) 
δs = 2.8 µm 

Mean roughness height on each conic frustum: 
k =  2.4 µm 4.8 µm  7.8 µm  13.9 µm  17.4 µm  22.8 µm 
 
k/δs = 0.8 1.7 2.8 4.9 6.1 8.1 
Rek

* = 9 19 30 54 68 89 
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Results: Mean Heat Flux Profiles 
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V∞ = 3 km/s (M∞ = 8.5), P∞ = 0.15 atm (air) 

Increasing Roughness Size 

Smooth Cone, s/RN > 0.78 
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Results: Mean Heat Flux Profiles 
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V∞ = 3 km/s (M∞ = 8.5), P∞ = 0.15 atm (air) For each profile, heat 
flux is averaged over a 
span of the conic surface 
1.8 < s/RN < 2.2 
and the ratio of rough- to 
smooth-wall heat flux, 
qr/qs, is formed 
 
• s/RN = 1.8 is sufficiently far 

downstream of the nose 
roughness (trip) to form a 
turbulent boundary layer 
profile 

• s/RN = 2.2 is sufficiently far 
upstream to avoid potential 
interference from the 
launch sabot 
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Results: Heating Augmentation Factor 
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V∞ = 3 km/s (M∞ = 8.5), P∞ = 0.15 atm (air) 

Heating augmentation factors on 45o sphere-cone 
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2.5 km/s, P∞ = 0.1 atm 
3.0 km/s, P∞ = 0.15 atm 
3.4 km/s, P∞ = 0.3 atm  
(30o sphere-cone)  
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Results: Heating Augmentation Factor 
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Results have been 
obtained at three test 
conditions: 

V∞, 
km/s 2.5 3.0 3.4 

ReD 
0.5 

x106 
0.9 

x106 
2 x 
106 

M∞
 7.5 8.5 10 

qs, 
W/cm2 930 2100 3300 

Pstag, 
atm 8 16 38 

δs, mm 3.36 2.8 1.9 
Cone 
angle 45o 45o 30o 
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Results: Heating Augmentation Factor 
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Comparison with Data from the PANT Program 
(Passive Nosetip Technology)1 

≅ Rek
* 

q r
/q

s 
= 

Nosetip Model  

1Wool, M. R., “Final Summary Report Passive Nosetip Technology 
(PANT) Program,” Aerotherm Report 75-159, June 1975. 
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Results: Implications for Flight 
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Saturn 
216 kg probe 

Uranus 
127 kg probe 

ReD 0.26 x 106 11 x 106 

Mach # 18 15 

Stagnation 
pressure, 

atm 
0.3 9 

Stagnation 
q0, W/cm2 785 1760 

Mid-frustum 
qs, W/cm2  614 1550 

δs, mm 1.08 0.12 

• Entry Trajectories were 
derived based on 2013-2023 
Planetary Science Decadal 
Survey 

• Heat flux and boundary-
layer parameters computed 
at peak convective heating1  

• Boundary-layer viscous 
sublayer thickness 
determined 

1Palmer, et al., “Uncertainty Determination for Aeroheating in Uranus and Saturn Probe 
Entries by the Monte Carlo Method,” AIAA Thermophysics Conference, June, 2013. 
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Results: Implications for Flight 
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Saturn entry trajectory: 
• A roughness > 1 mm is required 

for the onset of roughness 
augmentation of turbulent 
heating due to the thick 
boundary layer (δs ~ 1 mm) 
 

Uranus entry trajectory: 
• Augmentation factors as high as 

70% possible for roughness of 1 
mm 

Rek
* for 1 mm < k < 10 mm 

Saturn entry trajectory 

Rek
* for 0.1 mm < k < 1 mm 

Uranus entry trajectory 
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Summary 

• Data were obtained to quantify turbulent heat-transfer 
augmentation due to surface roughness on an Outer Planet 
probe geometry in hypersonic free flight 

– Test conditions span a range of convective heat transfer rates 
representative of Outer Planet entry environments 

– Results validated against wind-tunnel data obtained on other 
configurations 

• Augmentation factors up to 70% possible for roughness of 1 
mm for Uranus entry trajectory, when considering roughness 
alone. 
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Future work 

• Complete current test series 

• Employ ballistic range capability to test in various gases to 
expand data set to other atmospheres 
– Aerodynamic coefficients, such as drag, have been shown to 

differ in gases with different specific heat ratios1,2 
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1Intrieri, P. F., and De Rose, C. E., “Flight Characteristics of Probes in the 
Atmospheres of Mars, Venus and the Outer Planets,” Acta Astronautica, Vol. 4, 1977. 
 
2Brown, J., et al., “Free Flight Testing in Support of the Mars Science Laboratory 
Aerodynamics Database,” Journal of Spacecraft and Rockets, Vol. 43, No. 2, 2006. 
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