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ABSTRACT 
 
The pararotor as decceleration system is a good 
candidate as an atmospheric probe for a planet with a 
dense enough atmosphere. The results summarized here 
are those obtained in some recent research projects 
concerning the aerodynamics modelization, the stability 
analysis and vertical wind tunnel tests. The stability 
study gives information relevant to the mass 
distribution allocation inside the probe, in order to 
obtain a stable flight. It is shown that the stability map 
can be defined in terms of the ratios of moments of 
inertia, but some variations can be found if the 
pararotor blades are asymmetrically tilted. Some 
experimental results obtained with almost free flying 
models in a vertical wind tunnel with the aim of 
validating the theoretical model, are reported as well. 
 
1. INTRODUCTION 
 
Research on the behaviour of rotating wing 
decelerators has been carried out for the last four years. 
The purpose of this research effort is to know the 
capabilities of this kind of device as an aerodynamic 
decelerator. The papers found in the literature related 
with the subject [1-11] did not offer relevant findings 
on the behavior of the type of pararotor considered 
here (featuring a low aspect ratio rotating wings). To 
our knowledge, the first two papers directly devoted to 
low aspect ratio rotating wings have been published 
recently: [12] deals with the stability of a free falling 
pararotor, and [13] with a semi-empirical model for the 
aerodynamic behaviour of a low aspect ratio pararotor 
in autorotation at low Reynolds numbers. This last one 
includes the presentation of an experimental study of a 
pararotor that rotates fixed to a shaft.  
The studies presented here are the stability analysis of 
a free falling pararotor and the experimental 
investigation on small models that fly in a vertical 
wind tunnel. Finally, this theoretical model is analyzed 
related to the tests. Conclusions are drawn. 

 
2. THEORETICAL MODEL. STABILITY STUDY 

To elaborate this theoretical model the motion 
equations for an almost free falling pararotor have been 
formulated. These equations allow us to study motion 
stability. Motion stability depends on two 
nondimensional parameters (Ne and ke, defined later 
on), which contain geometric, inertia and aerodynamic 
characteristics of the device. Based on these two 
parameters a stability diagram can be defined. Some 
stability regions (in the plane Ne,ke) with different types 
of stability trajectories (nodes, spirals, focuses) can be 
identified for spinning motion around axes close to the 
major, minor and intermediate principal axes. It is 
found, for instance, that the aerodynamic forces acting 
on the blades contribute to the stability in the case of 
rotation around the intermediate principal inertia axis, 
which would be unstable in a vacuum. Then, the 
equations for determining the angles of nutation and 
spin of the body are shown, that define the orientation 
of the body for a steady motion. The parameters on 
which the orientation depends are also shown. 

 
2.1 Rotational motion equations 

 
As aforementioned, the system analyzed consists of a 
cylindrical body, with two identical blades that rotates 
at angular velocity ω =(ω1, ω2, ω3), and falls vertically 
at uniform velocity U∞. The geometry is defined in 
Fig. 1. The body-fixed reference system, 1,2,3, has its 
origin at the center of mass and directions e1,e2,e3. The 
axes 1,2,3 are principal axes of the body. The inertial 
reference system is X,Y,Z; its axes have the directions 
i,j,k. The blades are located on the plane 1,2.  
To simplify Euler´s equations the following 
assumptions have been considered: 1) the angles of 
attack, the angle of incidence of the blade and of the 
flow to the blades are all small; and 2) the component 
along the 1 axis of the relative velocity to the blade 



does not have an aerodynamic influence. Also, the 
effect of the higher order terms has been neglected.  
By using the aforementioned simplifying assumptions, 
the equations of rotational motion around the center of 
mass for the vertical free falling pararotor are 
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A, B, C are the principal moments of inertia; cD, is the 
drag coefficient of the blade; cLα,, is the slope of the 
curve lift vs. angle of attack for the blade; S is the area 
of one blade; rpij is the component j of the vector 
position of the center of pressure of the blade i ( j = 1, 
2, 3; i = 1, 2); ρ is the atmosphere gas density; ω0 is the 
angular velocity along the 3 axis; and φ  is the angle of 
incidence of the flow to the blades. 
 
2.2 Stability analysis 

 
Eq. (1c) can be decoupled from the others. Then, the 
solution for the equilibrium is found to be 
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, so-called “the ratio of the moments 

of inertia”.   
 
 
 ϕ

)−  is called “the stability 
number”. The stability of the equilibrium points is 
analyzed by following the classical perturbation 
method, through the characteristic equation of the 
autonomous system that defines the evolution of the 
trajectories of the system (either stable or unstable 
nodes, focuses or spirals) as a function of the values of 
the mentioned two parameters (Ne and ke). This last is 
defined as: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. System geometry. (X,Y,Z), inertial reference 
system; (1,2,3), body-fixed reference system; ψ, 

precession angle; θ, nutation angle; ϕ, spin angle; ω , 
angular velocity 

 
 
 
2.3 Stability regions 

 
As the signs of the differences of moments of inertia 
have an influence in the stability limits, their relative 
value should be taken into account. The results of this 
analysis can be displayed in a plane (Ne, ke). These 
parameters define the stability regions. They are 
summarized in Table 1. 
 
 
2.4 Determination of body attitude 

 
The nutation angle, θ, and spin angle, ϕ, (Fig. 1) are 
determined from system equations for the components 
of the angular velocity ω  in the body-fixed axes, for 
stationary motion 0θ =  (see [12]). 
 
It can be demonstrated [12] that ω  is a vector along 
the Z axis direction, as it is shown in Fig. 2. 
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Table 1. Stability cases 

Case 
Spinning motion close to: 

Relation 
of inertia 
moments 

Stable 
regions 

the major axis of inertia. 
Inertial stability ,A B C<  

0 1eN< < , 

 0ek >

the axis of lower inertia. 
Inertial stability* ,A B C>  

0eN < , 

 0ek >

the axis of intermediate inertia.  
Aerodynamic stabilization. B C A< <  

1eN > , 

0ek <  

the axis of intermediate inertia. 
No stability. A C B< <  No stability 

* In a vacuum this case becomes unstable when internal 
energy dissipation is included 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Orientation of the body. (X,Y,Z), inertial 
reference system; (1,2,3), body-fixed reference system; 
ψ, precession angle; θ, nutation angle; ϕ, spin angle. 

The angular velocity, ω , has the Z axis direction. 
 

Then, it is found that the motion of the body is just 
pure precession ( 0, 0ψ ϕ θ≠ = = ) at a constant speed, 
given by 3 / cosψ ω= θ ; and that the spin angle is  
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where it is also seen that the spin angle is kept constant 
and depends only on the mass distribution and the 
position of the blades, and does not depend on δβ. On 
the other hand, the nutation angle is 
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It is deduced that, for small angles of nutation, the 
nutation angle is proportional to δβ..  
Eqs. (4) could also be used for the non-steady case 
(small motions around the equilibrium position) if θ  
and ϕ  are small enough.  
 
3. VERTICAL WIND TUNNEL TESTS 
 
3.1 Experimental Set Up  

 
The experimental set up consists of a vertical wind 
tunnel (Fig. 3). A 5500 m3/h fan is located at the lower 
part of the wind tunnel. The air discharges to a diffuser, 
through a straightener. The test section is a part of the 
diffuser. The diffuser shape has been so designed to 
attain vertical stability of the model. The diffuser has a 
constant depth of 0.28 m; bottom width 0.29 m, top 
width 0.57 m and length 2.25 m. The test section 
dimensions are: bottom width 0.29 m, top width 0,57 m 
and length 0.5 m. 
 
3.2 Models description 

 
The tested models consist of a hollow cylinder and two 
rectangular blades of bare aluminium alloy. Inside the 
cylinder there is a guide located at the center of mass, 
to allow the model to move along the guiding wire. 
Two sets of cylinders and three sets of blades have 
been used for the present analysis (Fig. 4). The 
combination of sets of blades and cylinders gives 
different relations of principal moments of inertia of 
the complete model. The other dimensions of the tested 
models are shown in Tables 2 and 3. 
 

Table 2. Tested cylinders heights 
Configuration h, mm 

C05 26 
C06 56 

 
 

Table 3. Tested blades thicknesses 
Configuration e, mm 

P01 0.5 
P02 0.8 
P03 0.3 
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Figure  3. Sketch of the experimental set up. 
Vertical wind tunnel. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Model dimensions. 
 

As aforementioned, a given model is the result of a 
specified combination of a cylinder and a set of blades. 
In Table 4, the masses and inertia moments of the 
tested models are presented. 
 

Table 4. Tested model weight and inertia moments 

Configuration Mass 
[g] 

A x 106 
[kg m2]  

B x 106 
[kg m2] 

C x 106 
[kg m2] 

C05P01 15.2 3.5 8.9 11.6 
C05P02 20.1 5.4 21.2 25.9 
C05P03 11.6 1.9 5.8 6.9 
C06P02 28.1 9.5 25.3 27.1 
C06P03 19.6 5.9 9.8 8.1 

C05P02M01 22.7 10.1 22.5 31.8 
 
The model C05P02M01 has two 2.2 g masses located at 
body axes coordinates (mm): (17,−32,0) and (−17,32,0). 
The original purpose of introducing these masses has been 
to allow for variations of the inertia moment ratios. 

 
3.3 Definitions, measured parameters and 
instrumentation 

 
The following parameters have been measured: the 
spin velocity, measured by means of a stroboscopic 
lamp (resolution 50 rpm); the blade pitch angle, with a 
goniometer (resolution 1 deg); the flow velocity by a 
standard pitot-tube NPL type and a micromanometer 
(resolution 0.5 Pa); and the model weight, by means of 
a balance (resolution 0.01 g). 
There are two additional interesting parameters: the 
angle of the mean plane between the blades 

1 2( )β / 2δ β β= −  and the difference of pitch angle 

between the blades 1 2 2 0ε β β β= + = . 

114 mm 

40 mm 

63,5 mm 

26 mm 

e 
h 

1,2 mm 

34 mm  
3.4 Tests 

 
Several tests have been performed on the models 
described in Table 4, for the blades pitch angles shown 
in Tables 5 and 6, where the mean values of the 
parameters k (tip velocity ratio) and CDM  (equivalent 
pararotor drag coefficient) are also shown. N indicates 
the number of tests performed. 
Photographs and videos with and without stroboscopic 
illumination have also been taken in order to study the 
body attitude. 

 
3.5 Results and discussion on the experiments 

 
Results concerning the velocity ratio k and the drag 
coefficient CDM  are shown in Figs. 5 and 6. From these 
tests, it can be seen that: 
1) For the configurations with equal value of the pitch 
angle of both blades (−2, −4, −6, and −8 deg.), both the 
velocity ratio k and the drag coefficient of the model 
CDM decrease as the blades pitch angle increases. 



Table 5. Tests performed for configuration C05P02 
β1 
deg 

β2 
deg 

δβ 
deg 

ε 
deg k CDM N 

−12 8 −10 −4 0.39 3.06 1 
−12 10 −11 −2 0.46 3.38 1 
−10 −10 0 −20 − − 1 
−10 4 −7 −6 0.32 3.30 1 
−10 6 −8 −4 0.36 3.25 2 
−10 8 −9 −2 0.43 3.38 1 
−8 −8 0 −16 0.21 2.99 3 
−8 −8 0 −16 0.32 2.13 1 
−8 −4 −2 −12 0.22 3.24 3 
−8 0 −4 −8 0.24 3.39 3 
−8 2 −5 −6 0.34 3.41 2 
−8 4 −6 −4 0.37 3.48 3 
−8 6 −7 −2 0.40 3.61 2 
−8 10 −9 2 0.49 3.19 1 
−6 −8 1 −14 0.25 2.41 1 
−6 −6 0 −12 0.24 3.18 4 
−6 2 −4 −4 0.38 3.36 1 
−6 4 −5 −2 0.45 3.40 2 
−4 −8 2 −12 0.25 2.85 1 
−4 −6 1 −10 0.26 3.01 1 
−4 −4 0 −8 0.26 3.24 6 
−2 −2 0 −4 0.27 3.44 3 

 
Table 6. Tests performed for the other configurations* 
Configuration β1,deg β2,deg δβ,deg ε,deg k CDM 

C05P03 −12 10 −11 −2 0.39 3.33 
C05P03 −10 8 −9 −2 0.36 3.49 
C05P03 −6 −6 0 −12 0.24 3.06 
C05P03 −6 0 −3 −6 0.30 3.67 
C05P03 −4 −6 1 −10 0.25 3.33 
C05P03 −4 −4 0 −8 0.30 3.38 
C05P01 −12 10 −11 −2 0.44 3.32 

C05P02M01 −8 −8 0 −16 0.25 2.51 
C05P02M01 −6 −6 0 −12 0.27 2.62 
C05P02M01 −4 −4 0 −8 0.31 2.81 
C05P02M01 −2 −2 0 −4 0.38 3.03 

C06P02 −8 −8 0 −16 0.32 2.13 
C06P02 −6 −6 0 −12 0.24 2.30 
C06P02 −4 −4 0 −8 0.27 2.30 
C06P02 −2 −2 0 −4 0.31 2.54 
C06P03 −6 −6 0 −12 − − 
C06P03 −4 −4 0 −8 − − 
C06P03 −2 −2 0 −4 − − 

*N=1 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Configuration C05P02. Velocity ratio vs. 
blade pitch angle. 

 
Figure 6. Configuration C05P02. Model drag 

coefficient vs. blade pitch angle. 
 
2) Related to the value of the angle between blades ε it 
can be seen, as expected, that k decreases as |ε| 
increases (the model spins faster). On the other hand 
CDM  increases as |ε| decreases.  
3) Concerning the angle of the mean plane between the 
blades δβ, k decreases as δβ decreases. 

 
A regards attitude and stability of the model, it is 
shown that: 
1) As the theoretical model predicts, the tested models 
have shown stable motion when C>A,B and unstable 
motion when B>C>A. This feature is described below. 
2) For the configurations with one blade at positive 
pitch angle and the other at negative, it has been 
observed that the model rotates close to an axis 
perpendicular to the mean plane between the blades 
(Fig. 7). As is shown in Fig. 7, the cylinder is tilted, 
and then its symmetry axis rotates around the vertical 
direction (Z axis). The inclination of the cylinder 
symmetry axis increases as the mean plane between 
blades δβ increases and the difference of pitch angle 
between blades ε decreases (for C05P02, β1 = −12°, 
β2 = 10°, ε = −2° the cylinder shows the maximum 
inclination among the configurations tested).  
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Attitude of the model C05P02 for β1 = −12°, 
β2 = 10°, ε = −2°. 

 
As the inertia moment of the blades diminishes, the 
body rotates around an axis closer to the cylinder 



symmetry axis (C05P03, C05P01) for the same blade 
pitch angles tested. 
3) For the configuration C05P03, β1 = -12°, β2 = 10° 
and β1 = -10°, β2 = 8°, an oscillation of the model 
around the body axis 1 (Fig. 8) has been observed. 
4) During the tests the inclination of the model rotation 
axis (body axis 3) changed with time in an 
unpredictable way. The attitude of the models varies 
slowly, the rotation axis showing a small, almost 
constant nutation motion (Fig. 9). 
 
(Figs. 8 and 9 placed at the end). 
 
4. THEORETICAL MODEL VALIDATION 

From the vertical wind tunnel tests it is shown that:  
1) The models and configurations tested have exhibited 
stable motions when C>A,B (Fig. 11) and unstable 
motions when B>C>A (Fig. 12) in agreement with the 
theoretical model predictions. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure. 10. Attitude of the model C06P02 for  
β1 =−4°, β2 = −4°. C>B>A. Stable motion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 11. Attitude of the model C06P03 for β1 = −4°, 
β2 = −4°. B>C>A. Unstable motion. 

 

2) In the cases described in Section 3 where the 
cylinder symmetry axis is not perpendicular to the 
blade mean plane δβ ≠ 0, the body axis 3 does not 
coincide with that symmetry axis, and there is a small 
angle with the perpendicular to the mean plane 
between the blades. The theoretical model predicts that 
the body axis 3 should have an inclination with regard 
to the vertical direction ω , but small (less than 1°) for 
the tested models, and, therefore, difficult to measure. 

5. CONCLUSIONS 
 

5.1 Concerning the experiments 
 
1) It has been found that the models hover following 
either stable or unstable patterns, according to the ratio of 
moments of inertia, as predicted by the theoretical 
stability model. 
2) Both the velocity ratio k and the drag coefficient of the 
model CDM  decrease as the blades pitch angle increases. 
 
5.2 Concerning the analysis relating the experiments 
and the theoretical model 
 
1) The theoretical model correctly predicts the instability 
for a pararotor with the relation of principal inertia 
moments B>C>A. It was not possible to measure the 
inclination of the body axis in the vertical wind tunnel 
tests, to compare it with the predictions of the theoretical 
model, because the nutation angle for the tested 
configurations is small. 
 
5.3 Concerning pararotors as aerodynamic 
decelerators 
 
1) The pararotor is a viable concept as an aerodynamic 
decelerator. 
2) The behaviour of devices with low-aspect-ratio wings 
has been studied both experimentally and theoretically. 
The parameters, which determines the behaviour of the 
pararotor and the magnitude of their influence, are 
known in such a way that a specific application could 
be followed. 
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Figure. 10. Attitude of the model C05P02 for β1 = −6°, 

β2 = 4°. 
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