QOutline

e Future needs

BL-1



Ablative TPS - a short NASA history

Space Technology Division

» Early NASA missions (Gemini, Apollo, Mars Viking) employed new
ablative TPS that were tailored for the entry environment

» After Mars Viking, NASA-sponsored ablative TPS development
essentially ceased
— Focus shifted to reusable TPS (Shuttle)

— Pioneer Venus and Galileo employed fully dense carbon phenolic
(developed by USAF)

— NASA adopted a “risk averse” philosophy relative to TPS
— Use what was used before, even if it isn’t optimal
— Ablative TPS community slowly disappeared

« Stardust and Genesis were exceptions that employed new ablative
TPS

— Missions could not be accomplished with existing TPS materials
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NASA’s Entry Probe History

Ablative TPS Chronology (forebody)
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In over 40 years, NASA entry probes have only employed a few
ablative TPS materials. Half of these materials are (or are about to
be) no longer available.
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Broad Range of Entry

Environments

Mission Environments
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NASA entry probes have successfully survived entry environments
ranging from the very mild (Mars Viking ~25 W/cm? and 0.05 atm.)
to the extreme (Galileo ~30,000W/cm? and 7 atm.)
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TPS Mass Fraction

TPS MaSS Fraction for prior miSSionS « TPS material selection
" —r———r——— requires an assessment of
: the entry environment and
trade between ablation and
insulation performance
* Pioneer-Venus with 13%
TPS mass fraction is an
excellent example of TPS
optimization for a very
demanding mission
— High heat fluxes
— High pressures
— Relatively modest total heat
load
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The TPS mass fraction for an entry probe is a strong function of the total
integrated heat load (e.g., = 50% for Galileo) and the TPS material optimal
performance characteristics.
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Material Performance Limits

Limitations of ablative TPS classes
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Optimal performance regime is balanced between ablative and
insulation efficiency. When material is used outside of optimal zone,
inefficient performance leads to non-minimal mass fraction.
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TPS for Planetary Probes
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No human-rated ablative TPS available today!
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Aerothermal Environment

* Primary Uncertainties:
— Boundary layer transition and turbulent heating levels
— Shock layer radiation
— Coupled convection/radiation/ablation, including shape change
effects on aerodynamics and trajectory
* Improvements in current models required
— Different atmospheres (air, CO,/N,, N,/CH,, H,/He)
» Each planet has different physics that govern aerothermal heating
— Large range of potential entry velocities (6-50 km/s)
» Flow complexity is a strong function of velocity
« Ground test facilities cannot simulate all aspects of
environment

— In-situ flight data are essential for model improvement and
validation, particularly for non-Earth entries
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Galileo Probe Heat Shield Ablation:
The Most Difficult Atmospheric Entry in the Solar System
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TPS Ground Test Facilities

« Existing arc plasma facilities
— Operate with air (or N,)
— Limited gas enthalpy
— No combined convective/radiative capability
« NASA Ames designed, built and utilized the Giant Planet
Facility in support of the Galileo probe development
— Operated on H,/He; capable of high pressures & heat fluxes
— Decommissioned/disassembled after project completion
— Would require significant time and money to re-establish
+ Facility upgrades needed to support TPS development/
qualification for many planetary probe missions
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In conclusion

Space Technology Division

» Discussed the state-of-the-art (from a NASA
perspective) in modeling aerothermal
environments

» Described approaches to ablative TPS testing,
modeling, and qualification (including historical)

« Defined requirements for further development in
aerothermal modeling, ablative materials, ground
test facilities

We appreciate your participation and hope
you found this informative and useful
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