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What is this talk about? @

* Venus, one of the important planetary destination for scientific
exploration has presented many challenges

— The combination of extreme entry environment coupled with extreme surface
conditions have made proposal efforts in the last two decades to be non-

competitive.
 We present an approach where entry environment is made benign and
this allows for greater flexibility and lower risk in mission design
— greater mass, greater planetary reach,

— lower cost as a result of much reduced requirements for both instrumentation
as well as EDL system development and certification

Outline:
 Background
* Venus Mission

— Conventional Design and Science Instrumentation Selection to meet NRC
Decadal Survey Science Recommendations

 ADEPT — Mechanically Deployable Aeroshell Integrated Approach and
comparison with classical design

* Concluding Remarks




History: Venus Probes, Landers and
Balloon Missions

o ol i B L
kg/m?)| (deg km/s kW/cm?2

Venera 4 (1967) 519 10.7 1 450 9.66 Ballistic Coefficient:
Venera 5 (1969) 549 -62 to -65 11.2 1 440-450 13.5 B = M/CpA crerence
Venera 6 (1969) 549 -62to-65 11.2 1 440-450 13.5

Venera 7 (1970) 677 -60to-70 11.2 1 422-452 17

Venera 8 (1972) 670 =77 11.6 1 500 30

Venera 9 (1975) 367 -20.5 107 2.4 150 3.04

Venera 10 (1975) 367 -23 10.7 2.4 170 3.37 7

Pioneer-Venus-North (1978) 190 -68.7 11.5 0.7653 487 10.6

Pioneer-Venus-Night (1978) 190 -41.5 11.5 0.7653 350 7.8
Pioneer-Venus-Day (1978) 190 -25.4 11.5 0.7653 219 5.2

Pioneer-Venus-Large (1978) 188 -32.4 11.5 1.4228 276 6.9

Venera 11 (1978) 376 -18to-21 112 2.4 138-167 4.35
Venera 12 (1978) 379 -18to-21 112 2.4 138-167 4.35 y = entry flight path angle
Venera 13 (1981) 387 -18t0-21 112 2.4 138-167 4.35 " = sensed acceleration
Venera 14 (1981) 387 -18t0o-21 112 2.4 138-167 4.35

Vega 1 (1984) 412 -1823 107 24 130  3.06 q = heat rate

Vega 2 (1984) 412 -19.08 108 24 139  3.29

' Entry velocities have been defined for a 200 km altitude
i Simulations themselves were based on engineering estimates
i Total of engineering estimates for cold-wall convective and

radiative heat fluxes

« e Ref: Dutta, S., Smith, B., Prabhu, D., and
* Past missions: B > 100 kg/m?; |ventry| > 18 deg. Venkatapathy, E., "Mission Sizing and

Trade Studies for Low Ballistic Coefficient

* N_.,>130g'sandq,,, >3 kW/cm?2 Entry Systems to Venus," IEEEAC 1343,
2012 IEEE Aerospace Conference, Big

Sky, MT, March 2012.




Venus Science Objectives for NASA New Frontiers Progra
(<$1B, Pl-led missions) @

2011 Planetary Decadal Objectives for Venus:

— Understand the physics and chemistry of Venus’ atmosphere, especially
the abundances of its trace gases, sulfur, light stable isotopes, and noble

gas isotopes;

— Constrain the coupling of thermochemical, photochemical, and
dynamical processes in Venus' atmosphere and between the surface and
atmosphere to understand radiative balance, climate, dynamics, and
chemical cycles;

— Understand the physics and chemistry of Venus’ crust;

— Understand the properties of Venus’ atmosphere down to the surface
and improve our understanding of Venus’ zonal cloud-level winds;

— Understand the weathering environment of the crust of Venus in the
context of the dynamics of the atmosphere and the composition and
texture of its surface materials; and

— Look for planetary scale evidence of past hydrological cycles, oceans,
and life and for constraints on the evolution of the atmosphere of

Venus




Example VISE-like Surface Mission:
Venus Intrepid Tessera Lander (VITal)

1 hour descent science A A/
— Evolution of the atmosphere . _

. @\ —_— | o — \ 1
— Interaction of surface and [ 3

atmosphere ®

— Atmospheric dynamics I
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VITalL Strawman Science

Instrument Complement

Optimistic with conventional aeroshell:
steep entry angle = high g-loads

Mass (kg) Power(W) Volume (meters) DataRate/Voius TRI/Uaritage Comment

Neutral Mass Spectrometer 1l 50 0.26x0.16x0.19 2 kbps High/MSL/SAM ) | Data rate during descent;

(NMS) e ' ‘ reduced to 33 bgps on surface

Tunable Laser Spectrometer 45 7 0.25x010x0.10 34 kbps (|High/MSL/SAM) [Data rate during descent;

(TLS) > reduced to 300 bps on surface

Raman/Laser Induced 13 50 Per Optical Design ~ |5.2 Mb per sample (| Medium 12 bit, 3 measurements per

Breakdown Spectroscopy (LIBS) sample - one Raman and 2 LIBS

Descent Imager 2 12 Per Optical Design 6.3 Mbitsperimage  [High 12 bit, 1024 x 1024

Magnetometer 1 1 0.20x010x010  [0.064kbps High/Various Data rate during descent;
reduced to 6.4 bps on surface

Atmosphere Structure 2 32 0.10x0.10x0.10 2.5 kbps (descent) High/Hagship

Investigation (ASI) 0.25 kbps (surface

Panoramic Imager 3 12 Per Optical Design | 16.4 Mbits per band ¢ ﬁigh ™\ |12 bit, 2048 x 2048 detector

Context Imager 2 12 |PerOptical Design | 25.2 Mbits Ndligh " [12bit, 2048 x 2048 detector

Data volumes include 2-1 compression

Entry flight System Camera/Raman/LIBS Fields of View Stable Landing
Panorami(' ga\mera Fov

[N

Pressure Vessel

Inner &
QOuterRings

i\ Raman/LIBS

FOv
Descent (amera \
Fov \
\ 25m




Venus Surface Mission Challenges

* Landers can be high mass,

— Example: VITaL concept is
designed to safely land in rough
terrain

* Coupled with high mass entry
system:

* Limits mass available for science
payload and surface survival

— VITal science payload mass is
only 2% of probe mass!
* Inorder to get 2% mass to

surface location to perform
Science of interest requires
98% of the mass between EDL Vo2
systems and pressure vessel
that allows for science
instrumentation survival.

Dynamic
Landing

25m

Y




Venus Surface Mission Challenges @

* Determination of surface chemistry
requires either:

— Direct sample collection/ingestion

— “Remote” observation using state of
the art sensitive laser system (similar to
the ChemCam on MSL)

MSL instruments qualified for
25 — 30 g entry loads

* VITalL has predicted entry loads of
200 g (required by steep
atmospheric entry).

* Reduction of entry g-load enables

— Less development for state-of-
the-art instruments

— Less mass for the EDL system
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Carbon phenolic TPS places limits on Venus in-situ
science due to high entry g-loads

b= 208 kg/m? (45° sphere-cone, 2100 kg entry mass)
Ventry = 11.25 km/s
Trajectories Terminated at Mach 0.8

Decreasing G-load

Improved science capability
Reduced heat shield carrier structure mass

—\— =, Increasing Heat Load

Increased carbon phenolic thickness
Net Effect: |ncreasing TPS Mass Fraction!

/ Decreasing Payload Mass Fraction!

Traditional Venus Entry: What happens if we enter at a shallow flight path angle
Rigid 45° sphere-cone, Steep entry (-23.4°) near skip-out (-8.5°) with the same architecture?
- Peak g-load ~200 g’ s + Peak g-load ~20-30 g's
- Peak Heat Rate (Total) ~4000 W/cm? L R T e
- Peak Stagnation Pessure ~10 atm * Peak Stagnation Pressure ~1 atm
. Total Heat Load ~16.000 J/cm? * Total Heat Load ~28,000 J/cm2
bavioad M fon ~0.5 * Payload Mass Fraction ~0.2
f_, = = 3 - —_— . .
0 50 100 150 200 250

Time from Entry (s)



ADEPT

An Alternate EDL Architecture

Mechanically Deployable
Aeroshell




Deployable (Low-b ), Shallow-g Sweet Spot

Low-b entry, results in high

| . .
T\so ,,J : l - altitude deceleration where the
/ Ym |/ ! .
M{ °°' o resulting entry aerothermal
Dlrectlon of environment is benign

increasing pressure

— Well within the capability of
carbon cloth

e  Furthermore, the low-b
architecture allows entry with a
very shallow flight path angle,
dramatically reducing entry G-
load

 ADEPT key benefits:
1. No need for carbon phenolic
2. Benign entry G-load

v Simplifies qualification of
scientific instruments
v" Reduced structural mass of

Peak
deceleration (n)

d -10 -8 payload
Ventry ( eg) v" Opens doors for improved
Peak Total heat load science return using more

heat flux (q) Q) delicate instruments




ADEPT Approach to VISE Mission:
Unwrap Rigid Aeroshell and Adapt the VITalL Payload to ADEPT

 ADEPT-VITalL Approach
— What are the benefits, beyond the reduced G’load?

* Use of rigid aeroshell requires highly coupled design!
* Can we adapt the payload, without any modification, to the ADEPT concept?

— Are there challenges? ConOps?

VITaL Lander and Science Payload ADEPT-VITaL Integrated EDL System




ADEPT-VITalL Mission Feasibility:

Analysis, Trades and Design Decisions

Mission Feasibility

l

Mission Entry Design Entry System Payload
Design Environment Design Deployment
¥ v ¥ v
Launch Vehicle EDL Trajectory Geometry Subsonic
Fairing Separation
SN Flight Mechanics Payload Integ.
. Packaging Parachute
ST B Aero-stability
Structures Pyrotechnics
Cruise Stage Loads:
Interface oads: . _
Re-contact
ADEPT Aerothermal Materials
Deployment and Aeroelastic Far-Field
Release
Thermostructural ce Re-contact
CONOPS MEL Landing Site
Targeting and
Uncertainty

* Mission design and analysis coupled with trades to establish viability of ADEPT Concept

* Goalis to understand the benefits and penalties in order to compare and contrast ADEPT-
VITal (Deployable) with VITalL (Rigid Aeroshell)




Key System-Level Trades (1 of 2) @

« ADEPT-Venus Geometry (Cone Angle and Diameter) for b = 44 kg/m?

— System analysis showed this case as an approximate point of diminishing returns
for the low-b ADEPT architecture: structural mass begins to grow faster

— Stays within the constraints of expected carbon cloth capability for shallow entry
flight path angle

— 70° cone angle / 6-m diameter ADEPT-VITaL baseline is result of trade between
ADEPT mass, aerothermal loading, and stability considerations

b ~44 kg/m?

. Sharper cone angle
Payload Mass Fractions

70 deg. sphere-cone Larger diameter

I

0.9
0.8

0.7 ®
0.6 = ® o

0.5 ) —
0.4
0.3 ®
0.2
0.1

V'S K4 Decreased pressure

load on flank l

Increased turbulent
heating on flank

Decreased radiative
heating on flank

Increasing static margin
0 5 10 15 20 25

|

Diameter (m) Increasing structural mass

|

®B=60kg/m2 MR =40kg/m2
®B=20kg/m2 B =10kg/m2

6 m diameter 8 m diameter
70° cone-angle 45° cone-angle




Aft-Separation Concept Details

Main Parachute
¢ 0.14 m3 Stowed
« ~140 kg/m3 Packed Density

Probe Backshell
» Contains main parachute
* Protects science instruments from

30-50 W/cm? base heating

Pilot Chute Mortar
*@.20m X 0.40m (0.012 m3) as shown
Firing Vector through Center of Mass

'>

VITaL-ADEPT Sep Joint
* 3X @ 120-deg

Separation Guide Rail
* 3X @ 120-deg




ADEPT

Altitude, km

ADEPT-VITaL Mission Quick-Look

@ oo __

Launch 16 Month Trajectory 43\ /,:‘

Atlas V 551
29 May 2023

Mach 0.8: Separation Event Begins
» Mortar-deployed pilot parachute

* Aft cover release

* Pilot-deployed main parachute

\

Spin up

Targeting maneuver — = +f
Deploy ADEPT i

Release ADEPT for EDL
Cruise stage divert +1 day

Entry Interface
29 September 2024

- \/|Tal-separation-from-ADEPT

» Cut main parachute / VITaL release

V =10.8 km/s
g =-8.25°
Ballistic trajectory

Peak Deceleration

Peak Total Heating

Entry + 110s
Ototar 122 W/cm?
Pgtag = 0.24 atm
298G

Entry + 100 sec
Qiotal = 203 W/cm?
Py = 0.16 atm

stag

19.2G

6

Velocity, km/s




Altitude, km

Altitude, km

VITalL and ADEPT-VITalL Entry Environments
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—VITaL (Nom): 45°/3.5m, g = -23.4°
—ADEPT-VITaL: 70°/6m, g = -8.5°

B Peak g
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=—VITaL (Nom): 45°/3.5m, g = -23.4°
—ADEPT-VITaL: 70°/6m, g = -8.5°

Peak Pressure

VITaL = 8 bar, ADEPT-VITaL < 0.5 bar

0.0 2.0 4.0 6.0 8.0

Stag. point pressure, bar

—VITaL (Nom): 45°/3.5m, g = -23.4°
—ADEPT-VITaL: 70°/6m, g = -8.5°

) TMOSPHERIC SCIENCE
'

Heat Load VITaL =13 kJ/
ADEPT-VITaL = 7 kJicm?

0 5000 10000 15000

Stagnation point cold-wall heat load, J/cm?

ADEPT-VITaL Entry Environment is very Benign and well within Ground Test
Capabilities. VITalL Entry Environment is extreme and is a challenge for certification



ADEPT-VITaL Master Equipment List and
Comparison with VITalL

ADEPT Aeroshell 807 30% 1042
A 0,

Heat Shield 484 S 629 CBE Composite | 1ot mev

Main Body 233 30% 303 Item kg | Mass Growth k] VITaL MEV (kg)

Nose cap & Lock Ring 61 30% 79 e Allow. [%]

Ribs & Bearings 46 30% 60 Probe (Lander + Aeroshell) 1620.5 2100 2758

Struts & End Fit 42 30% 55 VITaL Lander 813.5 30% 1058 1379

Joint Hardware 10 30% 13 Lander Science Payload 36.9 30% 48 63

Carbon cloth 92 30% 120 Mass Spec 8.3 30% 1 14

Rigid Nose TPS 71 85 TLS 3.4 30% 4 6

[ -Nose tps 50 20% 60 Atmospheric Package 1.5 30% 2 3
-7 o Magnetometer 0.9 30% 1 1

E:S tps TPS 192 280;0 :: Descent Camera 1.6 30% 2 2
~AR cover o LIBS / Raman Context Camera 1.8 30% 2 3
Backshell 30 39 LIBS / Raman 9.8 30% 13 17
"Payload" backshell 30 30% 39 Panoramic Camera 2.3 30% 3 4
F : Science Payload 7.5 30% 10 13

2a SN TR 205 267 Accommodation (including

Overall Deployment System 54 30% 70 Mechanisms)

Stowed/Deployed Latches 19 30% 25 Lander Subsystems 776.6 30% 1010 1316
-aeroshell separation ring 30 30% 39 Mechanical/ Structure 212.3 30% 276 368
-separation guide rails 45 30% 59 Landing System 452.3 30% 588 784
-backshell sep 7 30% 9 Thermal 65.5 30% 85 100
-parachute system 50 30% 65 Power 12.3 g0 16 16

Avion: S P 17 22 Harness 10.0 30% 13 13
vionics & rower Avionics 6.8 30% 9 10
-avionics unit 4 30% 5 Mechanism Control Electronics 8.5 30% 11 13
-harness 5 30% 7 RF Comm 9.0 30% 12 12
-power unit 8 30% 10 ADEPT Aeroshell 807 30% 1042 1379




ADEPT-VITalL (Deployable) vs VITaL (Rigid Aeroshell)
Launch MEV MEL Comparison

OPTION 1: Ovda Regio 2021 Landing Site

[+

OPTION 2: Alpha Regio 2023 Landing Site

ADEPT.-VITaL VITalL Baseline ADEPT-VITaL VITa.L
Item Margined Margined (kg) Item Margined (kg) Baseline
(kg) g 9) | Margined (kg)
Probe 2,100 2,745 Probe 2,100 2,745
Spacecraft 970" 1100 Spacecraft 970* 1100
Satellite Dry Satellite Dry
Mass (Probe + 3,070 3,845 Mass (Probe 3,070 3,845
Spacecraft) + Spacecraft)
Propellant Mass 283 355 Propellant 1,117* 1,399
Mass
Wet Mass J ’ Wet Mass g ’
Atlas V 551 Throw Atlas V 551 Throw
Mass Available 5’140 kg Mass Available 5,140 kg

**Higher propellant mass than VITaL baseline
because a new landing site was chosen that
requires a deep space maneuver

*Spacecraft Mass has 22% contingency
versus VITalL baseline of 30%

« ADEPT architecture can lower the Launch Mass by 25%, or
* New Landing Site feasible only with ADEPT Architecture




Concluding Remarks (missing testing decreases an@/

lower mass

 ADEPT, a Low Ballistic Coefficient, Mechanically Deployable Entry System
Architecture is a Game Changer:
— Dramatically decreases the entry environment due to high altitude deceleration
(200 gs to 30 gs)

* Enables use of delicate and sensitive instrumentation
* Use of flight qualified instrumentation for lower G’load at Mars and elsewhere

* Entry mass and the launch mass are considerably reduced
— Mission Risk and Cost, once the technology is matured and demonstrated, will
be reduced considerably
* New Frontier and Discovery Class Missions to Venus become highly
Competitive with Missions to Other Destinations recommended by
Decadal Survey

* OCT’s investment in ADEPT, mechanically deployable aeroshell
technology has broad payoff including Venus

* Continued Technology Maturation and Flight Test of ADEPT concept by
2015/2016 will

— Enable Venus Missions to be a top contender for the next round of New
Frontier AO.




