Outline

- Background
- Mars Precision Lander Mission Architecture Options
- Baseline Mission Design
- Mission Timeline and Performance
- Landing/Touchdown Architectures
- Space Segment Design
- Summary and Conclusion
Background

- Mars Precision Lander is part of ESA’s Mars Robotic Exploration Preparation programme (MREP)

- The overall mission has been designed to deliver a payload of ~100kg onto the surface of Mars
 - Required landing precision of 10 km (3σ)
 - Goal of 7.5km (3σ)

- Landing precision is necessary to deliver a Sample Fetch Rover in close proximity to other elements of a potential MSR Mission
 - Caching Rover and Mars Ascent Vehicle
Mars Sample Return

- Alternative scenarios could also make use of MPL
 - Larger rover that can sample, cache and return to MAV
 - Element of a network science mission
 - Stand-alone science rover mission for European technology demonstration
Mars Precision Lander

- **Primary objective**
 - Deliver a sample fetch rover to the surface of Mars with a landing accuracy better than 10 km (goal of 7.5 km)

- **Mission design drivers**
 - Launch date: 2022 - 2026
 - Launch vehicle: Soyuz 2.1b/Fregat M from Kourou
 - Lander release: from Mars hyperbolic arrival trajectory
 - Landing site on Mars: latitude between 15°S and 30°N
 - Landing site altitude: -1 to 0 km MOLA

- **12 month assessment study concluded Feb 2012**
 - Potential architectures analysed and assessed
 - Full mission and space segment designed
Architecture Options

- **Transfer Selection and Carrier Design**
 - Extended transfer with additional revolution of Sun and EGAM selected => maximises mass and provides lowest entry velocity
 - Direct transfer with single half-revolution transfer had limited launch capacity
 - Launch into GTO required large and costly carrier

- **Entry**
 - Guided entry selected to meet precision landing requirements
 - Blunt capsule and biconic aeroshape configurations assessed => blunt capsule selected due to flight heritage and good stability
 - Norcoat Liege thermal protection system sufficient

- **Descent**
 - Single parachute and two-stage parachute descent considered
 - Single disk-gap-band parachute recommended
 - High heritage and simple solution
Architecture Options

- **Terminal Descent and Landing**
 - **Legged Lander**: heavy solution and complex egress
 - **Vented Airbags**: intolerant to rocks, slopes and wind, and complex egress
 - **Crushable Structure**: less tolerant to slopes and rocks, hard impact to rover
 - **DropShip**: lowest mass solution, tolerant to terrain, landing loads reduced to minimum, reduces ground effect
 - => DropShip selected

- **Rover Accommodation and Egress**
 - Rover accommodated under DropShip platform using HDRMs
 - Egress highly interlinked to terminal descent and landing
 - Many options investigated
 - DropShip selected => egress via a winch and cable mechanism
Baseline Mission Design

- **Mars Precision Lander composite:**
 - Carrier Spacecraft
 - Guided Entry Module (GEM)
 - DropShip
 - Sample Fetch Rover
 - Total wet mass = 1286 kg

- **Mission launches from Kourou on Soyuz-Fregat**
 - Launches in September/October 2023
 - Direct escape launch with Earth fly-by to increase useful mass
 - Arrives at Mars August/September 2025
 - GEM released from Carrier from hyperbolic arrival trajectory
 - Hyperbolic entry to Mars with $V_{\text{inf}} \sim 2.8$ km/s
 - X-band comms system used with ESA’s 35 m ground stations
 - UHF and X-band tones used during EDL
 - Carrier releases GEM for short coast and turn to entry attitude
MARS PRECISION LANDER MISSION
Payload: Sample Fetch Rover (SFR)
Launch date: Autumn 2023
Landing date: Autumn 2025
Final EDL Parameter Update

E-105mins

\(v_\infty = 2.8 \text{km/s} \)

Cruise Stage Separation

E-15mins

Turn to Entry @ E-14min

Entry Interface Point

E = 0s (timer), h = 120km

EFPA = -14.5°

Nominal \(R_{\text{EIP}} = 3522.2 \text{km} \)

Guided Entry Phase

D = 2.8m, L/D = 0.2 to 0.25, \(\beta = 100 \text{kg/m}^2 \)

\(Q_{\text{peak}} = 1245 \pm 41.2 \text{(1\sigma) kW/m}^2 \)

\(a_{\text{peak}} = 10.0 \pm 0.28 \text{(1\sigma) g} \)

Ballistic Mass Ejection

Parachute Deployment

E+250s, M<2

h = 10 \pm 1.175 \text{(1\sigma) km}

D0=16.2m (DBG)

Heatshield Separation

E+270s (timer), M<0.6

Radar activation

Camera @ E+280s

Doppler @ 3km

Powered Descent

Hazard detection @h = 400m and 25m divert

Dropship separation

E+295s

h = 1.1km-1.5km, v = 50-80m/s

Backshell avoidance manoeuvre <100m

Fly-Away

E+357s

Divert >100m

Dropship Phase

E+357s, 20m AGL, 0.75m/s descent on 7.5m bridle

Touchdown: 0.75m/s \pm 0.24m/s (3\sigma), horizontal = 0m/s \pm 0.24m/s (3\sigma)

LANDING ELLIPSE SEMI-MAJOR AXIS < 10KM
Entry and Descent Sequence

- Starts with detection of entry interface point by timer
 - Navigation information from inertial measurement unit guides the entry using thrusters scarfed through backshell
 - Guided entry module uses lift to drag ratio of 0.2 to 0.25
 - Ballistic coefficient of ~100 kg/m² and flight path angle of -14.5°
 - Peak heating on frontshield is 1245 ± 41 kW/m²
 - Maximum g-load is 10.00 ± 0.28 (1σ)
 - Offset centre of gravity gives correct angle of attack
 - Ballast mass ejected prior to parachute deployment

- Just below Mach 2 the 16.2 m parachute is released
 - Nominal altitude of 10 ± 1.2 km
 - Frontshield jettisoned 22 s after parachute, triggered by timer
 - Navigation cameras and radar initialised
 - DropShip separates from backshell with velocity-dependent altitude
 - Between 80 m/s at 1.5 km and 50 m/s at 1.1 km
 - Backshell avoidance manoeuvre performed by thrusters
Terminal Descent and Landing Sequence

- The terminal descent sequence consists of:
 - Freefall Phase (FFP)
 - Backshell Avoidance (BSA)
 - Descent Profile Acquisition (DPA)
 - Constant Deceleration (CD)
 - Hazard Detection and Avoidance (HDA)
 - DropShip Phase (DSP)

- DropShip Phase ends with release of the rover
- DSP is followed by Fly-away manoeuvre
DropShip Phase

- Starts 20 m above the ground, with no lateral velocity
- DropShip stabilises to a constant descent rate of 0.75 m/s
- Rover is lowered on three cables while the DropShip descends
- Rover touches down with max vertical velocity of 0.75 m/s and horizontal velocity of 0.24 m/s
- Entire configuration descends until the rover mass is off-loaded and the thrusters throttle down to maintain constant velocity

Required divert range: 100 m
Entry Descent and Landing Performance

Landing precision of <8km is achieved (99%)
Mars Precision Lander Composite

- Sample Fetch Rover Payload
- Dropship which controls the terminal descent and delivers the SFR
- Guided Entry Module which protects the DropShip and SFR during the EDL phase
- Carrier spacecraft which supports the other mission elements during launch and transfer
Carrier

- Inverted truncated cone with lightweight shear walls and outer panels
- Equipments mounted to upper deck
- 3-axis stabilisation provided by star trackers, sun sensors and thrusters
- Communications provided by x-band antennas
- Monopropellant CPS for dispersions corrections and trajectory control manoeuvres
- Power provided by an annular solar array
Guided Entry Module

- Viking shape aeroshell protects the DropShip and Rover during entry
- Back-shell and front-shield are connected by Separation and Distancing Mechanisms (SDM) which ensures a positive initial separation when the FS is jettisoned
- 16.2m Disk-Gap Band (DGB) Parachute System is deployed by mortar below Mach 2
- X-band antennas provide DTE communications of EDL events
- UHF antennas transmit EDL engineering data to local orbiters
DropShip

- Extensive trade-off on terminal descent architectures showed DropShip to be optimal
- Monopropellant CPS system feeds 200N guided entry thrusters and 400N descent thrusters
- Configuration based on a core panel, aluminium struts and an interface ring
- Doppler radar and vision based navigation used for descent navigation and hazard avoidance
Sample Fetch Rover

- Sample Fetch Rover design covered by a separate MREP activity

- Baseline design was for a rover with wheels fixed to a pallet for landing

- A modified design for stable DropShip landing was created
 - Squatter design
 - Larger footprint

Rover Coordinate System

Origin:

- X = 0 aligned with centre wheel axes
- Y = 0 on centreline
- Z = 0 on underside surface of body
DropShip – Rover Interface

- Rover attachment is via 3 hold down points
 - Winch cable attachment points that support the Rover until touchdown
 - Rover descent rate is controlled by a brake
 - After touchdown detection pyro-cutters are fired for separation

- 6 additional attachment prevent wheel shaking
 - Released prior to terminal descent
System Summary

- **Margin philosophy**
 - Maturity margins at component level
 - 20% system level margin
 - 10% additional launcher performance margin

- **6% margin retained above this**
 - Launcher capacity of 1477 kg
 - Launch adaptor of 110 kg assumed

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass including margins (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guided Entry Module</td>
<td>377</td>
</tr>
<tr>
<td>DropShip (incl. propellant)</td>
<td>480</td>
</tr>
<tr>
<td>Sample Fetch Rover</td>
<td>102</td>
</tr>
<tr>
<td>Carrier (incl. propellant)</td>
<td>327</td>
</tr>
<tr>
<td>TOTAL SPACE COMPOSITE</td>
<td>1286</td>
</tr>
</tbody>
</table>
Conclusions and Recommendations

- A feasible design compatible with a Soyuz launch in 2023 or 2025 has been defined

- Several critical drivers have been identified
 - Approach navigation accuracy
 - System mass
 - Terrain tolerance

- DropShip adopted as the only feasible method to deliver the 85kg payload

- Critical European technology developments required for
 - IMU, 200N thrusters, parachute mortar and rover lowering
 - DropShip system detailed design and demonstrator
Questions

Acknowledgements:

Lisa Peacocke, Jaime Reed, Marco Wolf, Tobias Lutz, Philippe Tran, Kelly Geelen