Tutorial on Ablative TPS Engineering Methods

Michael E. Tauber
Eloret Corporation
NASA Ames Research Center
Moffett Field, CA 94035

21 August 2004
Outline

• Engineering methods - why?
• Convective heating in air and CO₂
 – Laminar boundary layer
 – Turbulent boundary layer
• Boundary layer transition
• Radiative heating in air and CO₂-N₂
• Heat load scaling relations
 – Ballistic coefficient
 – Flight path angle
• Reference list
Outline

• Engineering methods - why?
 • Convective heating in air and CO₂
 – Laminar boundary layer
 – Turbulent boundary layer
 • Boundary layer transition
 • Radiative heating in air and CO₂-N₂
 • Heat load scaling relations
 – Ballistic coefficient
 – Flight path angle
• Reference list
Rationale

With present computational abilities, why use engineering methods?

- Some applications of simple relationships for calculating non-ablating convective and radiative heating
 - Negligible computation time
 - Included in most atmospheric trajectory codes-stag. pt. heating
 - Initial estimates of heating rates and loads for use during conceptual design stage
 - Categorizing the type of TPS material required
 - Comparing with values from CFD-type design codes
 - Estimating margins in final design
Convective Heat Transfer - 1

Definitions:

\[St = \frac{\dot{q}_w}{\rho_e u_e (h_{aw} - h_w)} \]
\[Pr = \frac{c_p u}{k} \]
\[Nu = \frac{\dot{q}_w}{k_w (h_{aw} - h_w)} \]

Modified Reynolds analogy:

\[St = \frac{c_f}{2} Pr^{-2/3} \]
\[\text{but } c_f \sim \text{Re}_w^{-n} \quad \text{(lam b.l. } n = 0.5, \text{ turb b.l. } n = 0.8) \]

from

\[\frac{Nu}{Re} = (St)(Pr), \quad \frac{Nu}{Re} \sim c_f Pr^{1/3} \sim \text{Re}^{-n} \text{Pr}^{1/3} \Rightarrow \frac{Nu}{Re^{1-n}} \sim \text{Pr}^{1/3} \]

Therefore, lam b.l. parameter is \(\frac{Nu}{Re^{0.5}} \) and turb is \(\frac{Nu}{Re^{0.2}} \)

Geometric relations:

\[\frac{\dot{q}_c}{\dot{q}_{fp}} = \left(\frac{2-n}{1-n} \right)^n = 1.732 \text{ (lam)} \text{ or } 1.176 \text{ (turb)} \]

In high speed flows, heating depends on
- Conduction through the b.l.
- Heat of recombination from species diffusing through the b.l. to the surface
Outline

• Engineering methods - why?
• **Convective heating in air and CO\textsubscript{2}**
 – Laminar boundary layer
 – Turbulent boundary layer
• Boundary layer transition
• Radiative heating in air and CO\textsubscript{2}-N\textsubscript{2}
• Heat load scaling relations
 – Ballistic coefficient
 – Flight path angle
• Reference list
Convective Heat Transfer - 2

For the laminar boundary layer at high speeds (Ref. 1)

\[\frac{Nu}{Re^{0.5}} = C_f \frac{T_W^b}{V_x^a} \text{ where } a = 0.1 - 0.2 \text{ and } b = 0.3 - 0.4 \]

\(C_f \) depends on body geometry: stagnation point, cone, flat plate
For a laminar boundary layer in air, for the stagnation point.
Using \(a=0.3575 \) and \(b=0.145 \), we get (Ref. 1)

\[\dot{q}_{w0} = 1.83 \times 10^{-4} \left(\frac{\rho_x}{r_n} \right)^{0.5} V_x^3 \left(1 - \frac{h_w}{h_t} \right) \text{ W/m}^2 \]

And for an effectively sharp cone of \(\delta_c \geq 15^\circ \)

\[\dot{q}_{wc} = 4.03 \times 10^{-5} \left(\frac{\rho_x \cos \delta_c}{x} \right)^{0.5} V_x^{3.2} \sin \delta_c \left(1 - \frac{h_w}{h_{aw}} \right) \text{ W/m}^2 \]

where \(h_{aw} = h_x + 0.5(Pr)^{0.5} V_x^2 \)
Convective Heat Transfer - 3

- For a CO₂ atmosphere (e.g., Mars and Venus), for the laminar boundary layer stagnation point (Ref. 2)

\[q_{w0} = 1.35 \times 10^{-4} \left(\frac{\rho_\infty}{\rho_n} \right)^{0.5} \frac{V_\infty^{3.04}}{h_t} \left(1 - \frac{h_w}{h_t} \right) \text{ W/m}^2 \]

- For the turbulent boundary layer, see Ref. 3
Comparison of Laminar Convective Heat Transfer Parameter Calculations

Space Technology Division

![Graph comparing Nl_w/Re_w vs Flight Velocity, km/sec for various researchers and geometries.](image)
Stagnation point convective heating comparisons

(REF. TP 2914)
Convective heating data

Space Technology Division
Total thermal conductivity comparison

Ref. 5

P = 1 atm
Stanton number distribution

Ref. 1

Space Technology Division
Comparison of CL heating calculations with STS-1 Flight Data

Ref. 1
Convective heating correlations in CO$_2$

data from various sources are plotted against ($h_g - h_p$). For air, the shaded area represents the majority of shock-tube data from a large number of sources. The solid lines represent equation (11) with the appropriate values of C and N. The data and equation (11) agree well for all the gases. Also, equation (11) agrees very well with the theory of reference 4 for air and CO$_2$ and reference 20 for air.

(REF. 6 & 7)
Pioneer Venus Sounder (Large) Probe
Stagnation Point Results (Refs. 8 & 9)

Convective Heating
Radiative Heating

- Design Data: scanned from PV CDR report
- Traj Results: 3DoF reconstruction of design trajectory
- DPLR Results: fully catalytic ("error" bars show modeling variability)
- NEQAIR Results: tangent slab corr. = 0.75; non-adiabatic corr. = 0.75

95% of radiation from CO(4+).
Pioneer Venus Sounder (Large) Probe
Flank Results

Engineering calculation method:

- Flat plate turbulent b.l. in air (Ref. 1) with h_w for CO$_2$ (Ref. 10)
- Geometric transformation to cone - multiply by 1.176
- From Ref. 3, for $V_\infty = 6000$-10000 m/s, use

\[
\left(\frac{\dot{q}_{CO_2}}{\dot{q}_{air}} \right)_{turb} = 271V_\infty^{-0.59}
\]

- Design data: scanned from PV CDR report
- DPLR results: fully catalytic, Baldwin-Lomax (error bars show modeling variability)
Boundary Layer Transition

- Determination of when in trajectory and where on body boundary layer transition occurs is mostly empirical
- Ground facility tests
 - Ablating material facilities (arc jets)
 - Very low Reynolds no., laminar boundary layer only
 - High-speed wind tunnels - ineffective because of disturbances
 - Pressure fluctuations in stream
 - Turbulent boundary layer on wall disturbs flow result in early transition
- High-speed flight data best by far, but sparse

Approach

Transition caused by changes in the B.L. velocity and temperature profiles (Refs. 11-14)

1) Amplification of disturbances in B.L.
 B.L. edge Re based on length, Re_L, or momentum thickness, Re_θ
 $Re_\theta < 200$ for approx. $M < 1.5$ (STS, etc.)

2) Surface roughness max. height, k
 $Re_k < 100$ (STS, USAF-PANT, etc.)

3) Ablation mass-injection (Apollo)

4) Combined mass-injection and roughness (USAF-PANT)

5) Cross-flow caused by $\alpha \neq 0$, neglect if $\alpha << \theta_c$
 Heavy reliance on CFD and material response codes (GIANTS, DPLR and FIAT) for inputs
B.L. Transition Correlations

Ref 13

Figure 12 - Comparison of Smooth and Distributed Roughness Transition Results.

ML-20
MER-B Undershoot GASP CFD
TCM5, Gamma=-12.25 deg

Transition Criteria

Laminar/Turbulent Comparison

Ref. 15

ML-21
Radiative Heating

For Earth and Mars, for stagnation point (see Ref. 16)
\[\dot{q}_r = C_i r_n^a \rho_\infty^b f_i(V_\infty) \text{ where sub } i = E \text{ or } M \]

For Earth:
\[a = f(\rho_\infty, V_\infty), \quad b = 1.22, \quad C_E = 4.736 \times 10^4 \]

For Mars:
\[a = 0.526, \quad b = 1.19, \quad C_M = 2.35 \times 10^4 \]
\[f_E(V_\infty) \text{ and } f_M(V_\infty) \text{ are tabulated} \]

(Note ranges of applicability of \(r_n \) and \(\rho_\infty \))

For Venus - steep entry angles, high stagnation pressure, see Ref. 17 for tabulated values (90% CO\(_2\) - 10% N\(_2\) atmosphere)
(actual atmospheric composition is 96.5% CO\(_2\) - 3.5% N\(_2\))
\[b = 1.2 \]
Comparison of calculated heating with Fire II Data

\[V_e = 11.37 \text{ km/s (Refs. 18-21)} \]
Convective (Case 3) and Radiative Heat Fluxes (Ref. 22)

\[V_\infty = 13,280 \text{ m/s}, \quad \rho_\infty = 1.078 \times 10^{-4} \text{ kg/m}^3, \quad \text{alt} = 65 \text{ km}, \quad p_s = 0.18 \text{ atm} \]
Stagnation Point Heating Rate Comparisons

AIR (Ref. 23)

<table>
<thead>
<tr>
<th>V_e</th>
<th>γ_e</th>
<th>m/C_{DA}</th>
<th>V_∞</th>
<th>p_S</th>
<th>\dot{q}_{c_eng}</th>
<th>\dot{q}_{c_DFLR}</th>
<th>Δ</th>
<th>$\dot{q}{r{eng}}$</th>
<th>$\dot{q}{r{NEQAIR}}$</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>km/s</td>
<td>deg</td>
<td>kg/m²</td>
<td>km/s</td>
<td>atm</td>
<td>(W/cm²)</td>
<td>(W/cm²)</td>
<td>(%)</td>
<td>(W/cm²)</td>
<td>(W/cm²)</td>
<td>(%)</td>
</tr>
<tr>
<td>11.</td>
<td>-8.5</td>
<td>40.</td>
<td>9.25</td>
<td>0.160</td>
<td>325.</td>
<td>400.</td>
<td>-18.8</td>
<td>10.</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>11.</td>
<td>-10.0</td>
<td>40.</td>
<td>9.28</td>
<td>0.196</td>
<td>355.</td>
<td>450.</td>
<td>-21.1</td>
<td>13.</td>
<td>8.2</td>
<td>+58.5</td>
</tr>
<tr>
<td>11.</td>
<td>-8.5</td>
<td>80.</td>
<td>9.24</td>
<td>0.296</td>
<td>430.</td>
<td>545.</td>
<td>-21.1</td>
<td>24.</td>
<td>10.6</td>
<td>+126.</td>
</tr>
<tr>
<td>11.</td>
<td>-10.0</td>
<td>80.</td>
<td>9.22</td>
<td>0.377</td>
<td>480.</td>
<td>605.</td>
<td>-20.7</td>
<td>33.</td>
<td>12.9</td>
<td>+156.</td>
</tr>
<tr>
<td>12.5</td>
<td>-8.5</td>
<td>40.</td>
<td>10.49</td>
<td>0.195</td>
<td>460.</td>
<td>560.</td>
<td>-17.9</td>
<td>78.</td>
<td>61.0</td>
<td>+27.8</td>
</tr>
<tr>
<td>12.5</td>
<td>-10.0</td>
<td>40.</td>
<td>10.47</td>
<td>0.249</td>
<td>510.</td>
<td>625.</td>
<td>-18.4</td>
<td>108.</td>
<td>87.4</td>
<td>+23.6</td>
</tr>
<tr>
<td>12.5</td>
<td>-8.5</td>
<td>80.</td>
<td>10.61</td>
<td>0.347</td>
<td>615.</td>
<td>750.</td>
<td>-18.0</td>
<td>182.</td>
<td>163.4</td>
<td>+11.4</td>
</tr>
<tr>
<td>12.5</td>
<td>-10.0</td>
<td>80.</td>
<td>10.53</td>
<td>0.459</td>
<td>700.</td>
<td>840.</td>
<td>-20.0</td>
<td>252.</td>
<td>224.0</td>
<td>+12.5</td>
</tr>
<tr>
<td>14.</td>
<td>-8.5</td>
<td>40.</td>
<td>11.92</td>
<td>0.242</td>
<td>640.</td>
<td>740.</td>
<td>-13.5</td>
<td>258.</td>
<td>216.2</td>
<td>+19.4</td>
</tr>
<tr>
<td>14.</td>
<td>-10.0</td>
<td>40.</td>
<td>11.86</td>
<td>0.297</td>
<td>730.</td>
<td>830.</td>
<td>-12.0</td>
<td>360.</td>
<td>311.0</td>
<td>+15.8</td>
</tr>
<tr>
<td>14.</td>
<td>-8.5</td>
<td>80.</td>
<td>11.85</td>
<td>0.413</td>
<td>875.</td>
<td>960.</td>
<td>-8.9</td>
<td>580.</td>
<td>494.1</td>
<td>+17.4</td>
</tr>
<tr>
<td>14.</td>
<td>-10.0</td>
<td>80.</td>
<td>11.78</td>
<td>0.565</td>
<td>1000.</td>
<td>1125.</td>
<td>-11.1</td>
<td>826.</td>
<td>732.0</td>
<td>+12.8</td>
</tr>
</tbody>
</table>

ML-25
Pioneer Venus Sounder (Large) Probe
Stagnation Point Results (Refs. 17 & 23)

- Design Data: scanned from PV CDR report
- TRAJ Results: 3DoF reconstruction of design trajectory
- DPLR Results: fully catalytic (error bars show modeling variability)
- NEQAIR Results: tangent slab corr. = 0.75; no-adiabatic corr. = 0.75

95% of radiation from CO(4+)
Mars Pathfinder Growth History

Space Technology Division

![Graph showing the growth history of Mars Pathfinder, with data points for mass and ballistic coefficient from 1992 to 1996.](Image)
Heating Pulse Parameters

Aerodynamic heating rate (non-ablating)

\[\frac{dq}{dt} = C_f(L) \rho^n V^m \left(1 - \frac{h_w}{h_r}\right) \sim \rho^n V^m \]

(assuming \(\frac{h_w}{h_r} << 1 \), and \(C, f(L) \) are independent of \(\rho \) and \(V \))

Heat load \(q \sim \int \rho^n V^m dt \)

During heating pulse \(\frac{W \sin \gamma}{D} = \frac{mg \sin \gamma}{\frac{1}{2} \rho V^2 C_D A} \ll 1 \)

Thus \(-\frac{dV}{dt} = \frac{C_D A}{m} \rho V^2 \) or \(dt = -2 \frac{m}{C_D A \rho V^2} dV \)

Assuming that the ballistic coefficient, \(\frac{m}{C_D A} \), and flight path angle, \(\gamma \), are constant, permits relating \(\rho \) and \(V \) (the Allen-Eggers equation*) and integration of the heat load expression.

(see Tauber, J. Spacecraft & Rockets, July 1970, Ref. 24)

*For \(\frac{L}{D} = 0 \)
Entry Heat Load Dependence

Heat Load:

\[q \sim \left(\frac{m}{C_D A} \right)^n (\sin \gamma)^{n-1} \]

For laminar boundary layer: \(n = 0.5 \)
For turbulent boundary layer: \(n = 0.8 \)
For shock-layer radiation (depends on atmospheric composition, shock layer thickness, etc.)

- Mars atmosphere: \(n = 1.19 \)
- Earth atmosphere: \(n = 1.22 \)
- Venus atmosphere: \(n = 1.20 \)
- Jupiter atmosphere: \(n = 1.17-1.45 \)

(Note strong dependence of radiative heat load on \(\frac{m}{C_D A} \))

Digress: What fraction of entry KE must be dissipated in form of heat by vehicles?
Examples: Jupiter Galileo probe (ablating) \(\approx 0.1\% \)
Shuttle orbiter (radiation cooling) \(\approx 0.5\% \)
Entry Heat Load Variation with Flight Path Angle
(Relative Values)

Relative heat load, non-ablating

Relative flight path angle (deg)

Radiative
- Jupiter
- Earth
- Venus

Convective
- Turbulent
- Laminar
Summary

- Engineering heating equations are useful and adequately accurate for many intended applications
 - Comparisons in air for generic sample return missions ($V_E = 11-14$ km/s) and for Pioneer-Venus large probe, show stagnation point convective heating 10-20% below CFD
 - Radiative heating 10-30% above NEQAIR
 - But, sum of convective and radiative heating is 10% higher than measured peak Fire II flight rate
 - Turbulent convective heating is overpredicted by up to 30% in air and primarily CO$_2$ atmospheres
Summary (concluded)

• Boundary layer transition
 – Ground facilities predict earlier transition than flight
 – Use up to 5 empirical criteria

• Scaling of heat load with ballistic coefficient (especially) and entry angle depends on dominant heating mechanism: laminar or turbulent boundary layer or radiation
Heating Pulse Parameters

Aerodynamic heating rate (non-ablating)
\[
\frac{dq}{dt} = Cf(L)\rho^n V^m \left(1 - \frac{h_w}{h_r}\right) \sim \rho^n V^m
\]
(assuming \(\frac{h_w}{h_r} << 1\), and \(C, f(L), n\), and \(m\) are independent of \(\rho\) and \(V\))

Heat load \(q \sim \int \rho^n V^m dt\)

During heating pulse
\[
\frac{W \sin \gamma}{D} = \frac{mg \sin \gamma}{\frac{1}{2} \rho V^2 C_DA} \ll 1
\]

Thus
\[
-\frac{dV}{dt} = \frac{1}{2} \frac{C_DA}{m} \rho V^2 \text{ or } dt = -2 \frac{m}{C_DA} \rho V^2 dt
\]

Assuming that the ballistic coefficient, \(\frac{m}{C_DA}\), and flight path angle, \(\gamma\), are constant, permits relating \(\rho\) and \(V\) (the Allen-Eggers equation*) and integration of the heat load expression.

(see Tauber, J. Spacecraft & Rockets, July 1970, Ref. 24)

*For \(\frac{L}{D} = 0\)

ML-33
Stagnation Point Heating Rate Comparisons

AIR (Ref. 23)

<table>
<thead>
<tr>
<th>V_e (km/s)</th>
<th>γ_e (deg)</th>
<th>m/C_{DA} (kg/m²)</th>
<th>V_∞ (km/s)</th>
<th>P_s (atm)</th>
<th>\dot{q}_{ceng} (W/cm²)</th>
<th>\dot{q}_{cDPLR} (W/cm²)</th>
<th>Δ (%)</th>
<th>\dot{q}_{reng} (W/cm²)</th>
<th>$\dot{q}_{rNEQAIR}$ (W/cm²)</th>
<th>Δ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>-8.5</td>
<td>40.</td>
<td>9.25</td>
<td>0.160</td>
<td>325.</td>
<td>400.</td>
<td>-18.8</td>
<td>10.</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>11.</td>
<td>-10.0</td>
<td>40.</td>
<td>9.28</td>
<td>0.196</td>
<td>355.</td>
<td>450.</td>
<td>-21.1</td>
<td>13.</td>
<td>8.2</td>
<td>+58.5</td>
</tr>
<tr>
<td>11.</td>
<td>-8.5</td>
<td>80.</td>
<td>9.24</td>
<td>0.296</td>
<td>430.</td>
<td>545.</td>
<td>-21.1</td>
<td>24.</td>
<td>10.6</td>
<td>+126.</td>
</tr>
<tr>
<td>11.</td>
<td>-10.0</td>
<td>80.</td>
<td>9.22</td>
<td>0.377</td>
<td>480.</td>
<td>605.</td>
<td>-20.7</td>
<td>33.</td>
<td>12.9</td>
<td>+156.</td>
</tr>
<tr>
<td>12.5</td>
<td>-8.5</td>
<td>40.</td>
<td>10.49</td>
<td>0.195</td>
<td>460.</td>
<td>560.</td>
<td>-17.9</td>
<td>78.</td>
<td>61.0</td>
<td>+27.8</td>
</tr>
<tr>
<td>12.5</td>
<td>-10.0</td>
<td>40.</td>
<td>10.47</td>
<td>0.249</td>
<td>510.</td>
<td>625.</td>
<td>-18.4</td>
<td>108.</td>
<td>87.4</td>
<td>+23.6</td>
</tr>
<tr>
<td>12.5</td>
<td>-8.5</td>
<td>80.</td>
<td>10.61</td>
<td>0.347</td>
<td>615.</td>
<td>750.</td>
<td>-18.0</td>
<td>182.</td>
<td>163.4</td>
<td>+11.4</td>
</tr>
<tr>
<td>12.5</td>
<td>-10.0</td>
<td>80.</td>
<td>10.53</td>
<td>0.459</td>
<td>700.</td>
<td>840.</td>
<td>-20.0</td>
<td>252.</td>
<td>224.0</td>
<td>+12.5</td>
</tr>
<tr>
<td>14.</td>
<td>-8.5</td>
<td>40.</td>
<td>11.92</td>
<td>0.242</td>
<td>640.</td>
<td>740.</td>
<td>-13.5</td>
<td>258.</td>
<td>216.2</td>
<td>+19.4</td>
</tr>
<tr>
<td>14.</td>
<td>-10.0</td>
<td>40.</td>
<td>11.86</td>
<td>0.297</td>
<td>730.</td>
<td>830.</td>
<td>-12.0</td>
<td>360.</td>
<td>311.0</td>
<td>+15.8</td>
</tr>
<tr>
<td>14.</td>
<td>-8.5</td>
<td>80.</td>
<td>11.85</td>
<td>0.413</td>
<td>875.</td>
<td>960.</td>
<td>-8.9</td>
<td>580.</td>
<td>494.1</td>
<td>+17.4</td>
</tr>
<tr>
<td>14.</td>
<td>-10.0</td>
<td>80.</td>
<td>11.78</td>
<td>0.565</td>
<td>1000.</td>
<td>1125.</td>
<td>-11.1</td>
<td>826.</td>
<td>732.0</td>
<td>+12.8</td>
</tr>
</tbody>
</table>
References

References (continued)

References (continued)

15. Loomis, M., NASA Ames Research Center, private communication
21. Prabhu, D., NASA Ames Research Center, private communication
References (concluded)

23. McDaniel, R., NASA Ames Research Center, private communication
24. Wright, M. J. and Allen, G., NASA Ames Research Center, private communication