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• Engineering methods - why?
• Convective heating in air and CO2

– Laminar boundary layer
– Turbulent boundary layer

• Boundary layer transition
• Radiative heating in air and CO2-N2
• Heat load scaling relations

– Ballistic coefficient
– Flight path angle

• Reference list
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RationaleRationale

With present computational abilities, why use engineering methods?

• Some applications of simple relationships for calculating non-
ablating convective and radiative heating

– Negligible computation time
– Included in most atmospheric trajectory codes-stag. pt. heating
– Initial estimates of heating rates and loads for use during 

conceptual design stage
– Categorizing the type of TPS material required
– Comparing with values from CFD-type design codes
– Estimating margins in final design
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Convective Heat Transfer Convective Heat Transfer -- 11
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Convective Heat Transfer Convective Heat Transfer -- 22
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Convective Heat Transfer Convective Heat Transfer -- 33
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Comparison of Laminar Convective Comparison of Laminar Convective 
Heat Transfer Parameter CalculationsHeat Transfer Parameter Calculations
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Stagnation point convective Stagnation point convective 
heating comparisonsheating comparisons
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Convective heating dataConvective heating data
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Total thermal conductivity Total thermal conductivity 
comparisoncomparison

Ref. 5

P = 1 atm
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Stanton number distributionStanton number distribution

Ref. 1



Space Technology Division   

ML-14

Comparison of CL heating calculations Comparison of CL heating calculations 
with STSwith STS--1 Flight Data1 Flight Data

Ref. 1
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Convective heating correlations in COConvective heating correlations in CO22
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Pioneer Venus Sounder (Large) ProbePioneer Venus Sounder (Large) Probe
Stagnation  Point Results Stagnation  Point Results (Refs. 8 & 9)(Refs. 8 & 9)

Convective Heating Radiative Heating

95% of 
radiation 
from 
CO(4+)

♦ Design Data : scanned from PV CDR report
♦ Traj Results : 3DoF reconstruction of design trajectory
♦ DPLR Results : fully catalytic (“error” bars show modeling variability)
♦ NEQAIR Results : tangent slab corr. = 0.75; non-adiabatic corr. = 0.75
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Pioneer Venus Sounder (Large) ProbePioneer Venus Sounder (Large) Probe
Flank ResultsFlank Results
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Boundary Layer TransitionBoundary Layer Transition

• Determination of when in trajectory and where on body 
boundary layer transition occurs is mostly empirical

• Ground facility tests
– Ablating material facilities (arc jets)

• Very low Reynolds no., laminar boundary layer only

– High-speed wind tunnels - ineffective because of 
disturbances
• Pressure fluctuations in stream
• Turbulent boundary layer on wall disturbs flow

result in early transition
• High-speed flight data best by far, but sparse



Space Technology Division   

ML-19

ApproachApproach

Transition caused by changes in the B.L. velocity and 
temperature profiles (Refs. 11-14)

1) Amplification of disturbances in B.L.
B.L. edge Re based on length,        , or momentum thickness, 

< 200 for approx. M < 1.5 (STS, etc.)
2) Surface roughness max. height,

< 100 (STS, USAF-PANT, etc.)
3) Ablation mass-injection (Apollo)
4) Combined mass-injection and roughness (USAF-PANT)
5) Cross-flow caused by        , neglect if

Heavy reliance on CFD and material response codes (GIANTS, 
DPLR and FIAT) for inputs  

ReL Reθ
Reθ

k
Rek

α ≠ 0 α <<θc
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B.L. Transition CorrelationsB.L. Transition Correlations

Ref 13
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MERMER--B Undershoot GASP CFDB Undershoot GASP CFD
TCM5, Gamma=TCM5, Gamma=--12.25 deg12.25 deg

Transition Criteria Laminar/Turbulent Comparison
Ref. 15
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Radiative HeatingRadiative Heating
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Comparison  of calculated heating Comparison  of calculated heating 
with Fire II Datawith Fire II Data

Ve = 11.37 km/s (Refs. 18-21)
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Convective (Case 3) and Radiative Convective (Case 3) and Radiative 
Heat Fluxes (Ref. 22)Heat Fluxes (Ref. 22)

V∞ = 13,280 m/s, ρ∞ = 1.078 × 10−4 kg/m3 , alt = 65km, ps = 0.18 atm
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Stagnation  Point Heating Rate ComparisonsStagnation  Point Heating Rate Comparisons
AIR (Ref. 23)AIR (Ref. 23)
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Pioneer Venus Sounder (Large) ProbePioneer Venus Sounder (Large) Probe
Stagnation Point Results (Refs. 17 & 23)Stagnation Point Results (Refs. 17 & 23)

Design Data: scanned from PV CDR report

TRAJ Results:3DoF reconstruction of design trajectory

DPLR Results: fully catalytic (error bars show modeling 
variability)

NEQAIR Results:tangent slab corr. = 0.75; no-adiabatic corr. = 0.75

Convective Heating Radiative Heating

95% of 
radiation 
from 
CO(4+)
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Mars Pathfinder Growth HistoryMars Pathfinder Growth History
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Heating Pulse ParametersHeating Pulse Parameters
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Entry Heat Load DependenceEntry Heat Load Dependence

Heat Load:

For laminar boundary layer: n =0.5
For turbulent boundary layer: n =0.8
For shock-layer radiation (depends on atmospheric composition, shock 
layer thickness, etc.) 

Mars atmosphere: n =1.19
Earth atmosphere: n =1.22
Venus atmosphere: n =1.20
Jupiter atmosphere: n =1.17-1.45

(Note strong dependence of radiative heat load on

Digress: What fraction of entry KE must be dissipated in form of heat by 
vehicles?
Examples:      Jupiter Galileo probe (ablating) ≈ 0.1%

Shuttle orbiter (radiation cooling) ≈ 0.5%
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Entry Heat Load Variation with Flight Path AngleEntry Heat Load Variation with Flight Path Angle
(Relative Values)(Relative Values)
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SummarySummary
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Summary (concluded)Summary (concluded)

• Boundary layer transition
– Ground facilities predict earlier transition than flight
– Use up to 5 empirical criteria

• Scaling of heat load with ballistic coefficient 
(especially) and entry angle depends on 
dominant heating mechanism: laminar or 
turbulent boundary layer or radiation



Space Technology Division   

ML-33

Heating Pulse ParametersHeating Pulse Parameters



Space Technology Division   

ML-34

Stagnation  Point Heating Rate ComparisonsStagnation  Point Heating Rate Comparisons
AIR (Ref. 23)AIR (Ref. 23)
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