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@/ Background
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Due to planetary protection concerns, the Mars Sample Return (MSR)
Earth Entry Vehicle (EEV) has to be the most reliable spacecraft ever
flown

— Probability of failure currently required to be <1x10-6

— This may be revised in the future, based on new knowledge
The Multi-Mission EEV concept is to use the design features of the
MSR EEV on other missions to gain confidence and increase reliability.

— Inherently stable aerodynamic shape (60° sphere cone) reorients to nose-
forward during entry in case of release perturbation

— No parachute — the capsule is designed to survive impact
— Heritage Carbon Phenolic TPS leverages DoD testing database

Since 1999, investments have been made in detailed design and
developmental testing




@/ Current Programmatic Status
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 The pre-Project efforts for Mars Sample Return have had varying
intensity levels for the past 15+ years.

— Technology investment planning has alternated with mission and
architecture design.

— The last significant technology planning effort was in 2008, and the “3-
mission” architecture has been the baseline since that same timeframe.

« The Planetary Sciences Decadal Survey calls for a number of sample
return missions in the next decade:
— Comet Surface Sample Return
— Lunar South Pole-Aitken Basin Sample Return
— Mars Sample Return

« Discovery and New Frontiers solicitations are expected in 2015 and
2016, respectively.

« Technologies must be developed to support viable proposals

« Current ISPT investments are modest ($1-$3M/year) and are focused
on analysis tool development and model validation testing



@/ ISPT’s Analysis Investments
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@/ Thermal Soak Analysis
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« Maintaining the scientific payload at the desired temperature is a
key requirement
— Different materials and thicknesses may be required, affecting mass
— Thermal soak may drive recovery timeline and method

 Thermal soak model has been developed and is being
parameterized for incorporation into the M-SAPE tool
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Analysis results will be presented in detail at the AIAA 43 Thermophysics Conference in
New Orleans this month. See Agrawal, et al. “Thermal Soak Analysis for Earth Entry Vehicles.”7



@/ ISPT’s Testing Investments
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* Ground testing is used to validate component models:
— Foam behavior

— Foam thermal properties T | 1s=0.1sec, hs=toowsec
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EEV Forebody TPS Materials

 Throughout past EEV work, assumed that only heritage carbon
phenolic could meet the planetary protection requirements of
MSR, due to its large DoD performance database.

« Space-grade chop-molded carbon phenolic (nosecap) has
limited suppliers; industry sustainability is an issue

« Carbon Phenolic and
Beyond Workshop #2 was
held in April at NASA-Ames

- Alternates to heritage CP
(other precursors)

— Other TPS materials (like 3-D
woven)

- Alternative architectures
(e.g., lower ballistic
coefficient)




@/ TPS Space Environmental Effects Testing
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* Goal is to mature more robust, efficient thermal protection
system (TPS) materials as far as possible, on the ground

« Exposure to sequential space environments will raise the
TRL and uncover unforeseen issues

 Analyses determined proper exposure environments
based on outer planets mission, to be representative of
challenging deep space environments

— Micrometeoroid: 7 km/s (backshell hit most likely on EEV)
— Cold Soak: near-cryogenic

— Radiation dose: Van Allen, GCR and solar flare

* Arcjet testing follows, at levels representative for the
MSR EEV. Durations are specified to stress the materials.
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@/ TPS Materials Considered
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Materials tested

have been either
used historically or ~ .
matured through g

ISPT funding |
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TPS materials:
— SRAM
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— Carbon-Carbon sl ~__Advanced C-C
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@ Typical Radiation Exposure Results
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Exposed the materials to 2 MeV electrons, to a total fluence
of 3.0x10'4 electrons/cm? using a National Electrostatics
Corporation Model 7.5SH Pelletron accelerator — a simulated

dose for a Titan cruise
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@/ Impact Test Matrix Summary (LMSSC)
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Tile N
. . Projectile | Impact | Impact
:fSt Target Type -lr)':?rl':eterl Pro;ec.tlle Dia]meter Velgcity Ar?gle Comments
0. .lc ness | Material km/s) (deg)
(inches) (mm) (
LMA Cold Impact
21 LMSEE SLA-10 45/0.5 Glass 1.0 7.0 0 Sample 7
22 LMSEE SLA-10 45/0.5 Glass 1.0 7.0 60 Sample 8
23 LMSEE SLA-10 45/1.0 Glass 1.0 7.0 0 Sample 3
24 LMSEE SLA-10 45/1.0 Glass 1.0 7.0 60 Sample 5
25 LMSEE CC-10 4.0/n/a Glass 1.0 7.0 0 Sample 1
26 LMSEE CC-10 4.0/n/a Glass 1.0 7.0 0 Sample 2
27 LMSEE CC-10 4.0/n/a Glass 1.0 7.0 60 Sample 5
28 LMSEE CC-10 Coated 4.0/n/a Glass 1.0 7.0 0 Sample 10
29 LMSEE CC-10 Coated 4.0/n/a Glass 1.0 7.0 60 Sample 12
LMA Irradiated Cold Impact
30 LMSEE SLA-10 45/0.5 Glass 1.0 7.0 0 Sample 9 Exp 12/28/10
31 LMSEE SLA-10 45/0.5 Glass 1.0 7.0 60 Sample 11 Exp 12/30/10
32 LMSEE SLA-10 45/1.0 Glass 1.0 7.0 0 Sample 4 Exp 1/3/11
33 LMSEE SLA-10 45/1.0 Glass 1.0 7.0 60 Sample 6 Exp 1/4/11
34 LMSEE CC-10 4.0/ n/a Glass 1.0 7.0 0 Sample 4 Exp unknown
35 LMSEE CC-10 4.0/n/a Glass 1.0 7.0 0 Sample 6 Exp unknown
36 LMSEE CC-10 4.0/nl/a Glass 1.0 7.0 60 Sample 7 Exp unknown
37 LMSEE CC-10 Coated 4.0/n/a Glass 1.0 7.0 0 Sample 9 Exp unknown
38 LMSEE CC-10 Coated 4.0/n/a Glass 1.0 7.0 60 Sample 11 Exp unknown
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SLA-561V, 0 deg Impact
Low-Density (16 Ib/ft®) Material

In-Space Propulsion Technologies (ISP

W WM T TS

14



Coated Carbon-Carbon with Calcarb
Insulator, 0 deg Impact

— | NASA JSC |
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SRAM-20, 0 deg Impact
Low-Density (20 Ib/ft®) Material
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Cavity Scanning Techniques
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Laser Scanning Results

N (opth: 0.551 inches
WIS |ength: 0.244 inches
W igth: 0.213 inches

area- 0,034 inches?
3

volume: 0.005 inches
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@/ Backshell: ARC AHF Arc Jet Testing
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« Backshell materials (SRAM-17, SRAM-20, SLA-561V) were
exposed to 60 W/cm? for 100 seconds

* No appreciable change in surface cavity shape

* Post-test scanning will reveal in-depth changes "



@/ Summary

* A passive, chuteless, aerodynamically stable design is
the most reliable, efficient configuration for an EEV.

« Significant progress is being made in advanced tools
and testing to mature the EEV design for use in
Discovery and New Frontiers proposals

— Other sample return missions can benefit from common
design principles

— Use on previous missions will build reliability in the MSR
EEV

« MMOD, arcjet, foam impact, and spin tunnel testing
ongoing in FY12

 Wind tunnel, and arcjet on additional materials, starting
in FY12 and continuing into FY13

In-Space Propulsion Technologies (ISPT,
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@/Update: Large Article Manufacturing
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ARA’s 2.65-meter, 70° SRAM-20 heatshield over ATK
very high-temperature structure---ready for CT scanning



