National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
Science & Technology
A Tale of Two Deserts

All life as we know it needs water. But what organisms can survive when water is all but unavailable? To find out, one scientist is looking at soil from two of the driest places on Earth.

Because the surface of Mars today is bone-dry and frozen all year round, it's difficult to find any place on Earth that is truly Mars-like. But two locations, Antarctica's Upper Dry Valleys and the hyper-arid core of Chile's Atacama Desert, come close. They have become magnets for scientists who want to understand the limits of life on Earth and the prospects for life on Mars.

Color image of rocky valley with a little snow.
University Valley, one of Antarctica's Upper Dry Valleys, where liquid water is a scarce commodity because the ground remains frozen year-round. Credit: M. Marinova
Color image of rocks on a desert plain.
In the hyperarid core of the Atacama Desert in northern Chile, one of the driest places in the world, years can go by between one rainfall and the next. Credit: Henry Bortman

Jocelyne DiRuggiero, an associate professor of biology at Johns Hopkins University in Baltimore, Maryland, studies samples from both locations. She's interested in the similarities and the differences between the microbial communities that live in these two extreme desert regions. In both places, very little liquid water is present. In the core of the Atacama, years can go by between one rainfall and the next, but it is warm, so when there is precipitation, a significant amount of liquid water is available for a very short time. In University Valley, one of Antarctica's Upper Dry Valleys, the availability of liquid water is limited in a different way. University Valley receives more regular precipitation than the Atacama, but it's so cold there that any precipitation falls in the form of snow and remains frozen.

"What we do in those environments is try to understand who is there, what those organisms might be doing, how they are distributed," and whether the organisms are "really active metabolically," or if instead they're "just sitting there, because they've been brought by the wind."

Read the Full Story

Last Updated: 18 April 2011

Science Features
Astrobiology
Astronomy Features
Power
Technology Assessment Reports
Sungrazing Comets

 

Best of NASA Science
NASA Science Highlights
Technology Features
Propulsion
Lectures & Discussions

Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writer: Autumn Burdick
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> USA.gov
> ExpectMore.gov
> NASA Advisory Council
> Open Government at NASA
Last Updated: 18 Apr 2011