National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
News & Events
MIT Researchers Seek Ocean on Jupiter's Moon through its Sounds
MIT Researchers Seek Ocean on Jupiter's Moon through its Sounds
4 Jun 2001
(Source: Massachusetts Institute of Technology)

News Office
Massachusetts Institute of Technology
Cambridge, Massachusetts

Deborah Halber, MIT News Office
(617) 258-9276,

CAMBRIDGE, Mass. - Acoustic techniques used by Massachusetts Institute of Technology researchers to explore the Arctic Ocean may help determine whether there is a vast liquid ocean under the ice blanketing Jupiter's moon, Europa.

MIT researchers report June 5 at the Chicago meeting of the Acoustical Society of America that they may be able to use a technique similar to ultrasound or the sonar navigation used by bats and dolphins to gather information about Europa.

MIT ocean engineering professor Nicholas C. Makris said that implanting soda-can-sized sensors in Europa's icy exterior could provide researchers with information on the temperature and structure of the planet. Current sensor technology makes it possible to detect even tiny motions, and there is evidence that massive ice fractures on Europa's surface occur daily.

While such an experiment may be a decade or more away, this unconventional approach to planetary exploration would have to begin to be developed now, Makris said. An array of geophones on the icy surface could simultaneously localize discrete events such as fractures and determine the moon's ice-layer thickness as well as the thickness of a potential ocean layer.


Europa may be the only entity in our solar system besides Earth that contains a great deal of water, researchers say, and this mission would represent the first time ocean scientists have been involved in planetary exploration.

Gravity and magnetic data collected by the NASA Galileo Orbiter over the past five years have provided increasing evidence that an ocean exists underneath Europa's uniform, 10- to 100-kilometer thick coat of ice. The possible ocean on Europa may contain more liquid water than all the oceans on Earth combined.

Magnetic studies have indicated that there must be a conducting layer in Europa. A salty ocean would fit the bill. Researchers hope to discover whether Europa is made up entirely of mushy ice or if it contains an ocean. Where there is water, there may be life.


Pictures of the planet show odd, cusp-shaped cracks in the surface. Europa's numerous fractures and ridges are believed to have formed in response to tidal deformations generated by the moon's slightly eccentric 85-hour orbit around Jupiter.

Inspired by evidence for these regularly occurring ice fractures, the MIT researchers propose probing Europa's interior by deploying an array of surface microphones that listen to naturally occurring sound. Knowledge of ice mechanics suggests that these propagating fractures would generate significant acoustic energy in the frequency range 0.1-100 Hz.

Studying the ice sounds would allow researchers to see if there was a connection between the moon's orbital period and the ice fractures, which occur on Europa once every 30 seconds. Meteors impact Europa about once a month and these also could be used as sound sources.


MIT researchers led by Makris, Doherty Professor of Ocean Utilization in MIT's Department of Ocean Engineering, have used sound-based techniques to explore the Arctic Ocean. By inserting vibration-sensitive hydrophones in the water, researchers used ambient sound to listen for changes in noise levels. They found that noise levels increased when winds and currents put stresses on the ice.

"Noise levels are like a thermometer for stress on the ice," Makris said. "The ice is very sensitive and conducive to sound." Sound waves made by large fractures go through the ice and penetrate into the ocean.

These low-frequency sound waves, akin to those created by whales, get trapped and can propagate hundreds of kilometers through the water. Even if they can't be heard, instruments can pick up their vibrations from a distance.

In addition to Makris, the research team includes ocean engineering postdoctorate associates Aaron M. Thode and Michele Zanolin and graduate students Sunwoong Lee, Purnima Ratilal and Joshua Wilson.

This work is funded by the Office of Naval Research. Makris is the Secretary of the Navy/Chief of Naval Operations Scholar of Oceanographic Sciences.

News Archive Search  Go!
Show  results per page
Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writers: Courtney O'Connor and Bill Dunford
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> NASA Advisory Council
> Open Government at NASA
Last Updated: 8 Jun 2001