National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
News & Events
New Planets Face Rocky Road
New Planets Face Rocky Road
18 Oct 2004
(Source: Jet Propulsion Laboratory)

MEDIA RELATIONS OFFICE
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
PASADENA, CALIF. 91109 TELEPHONE (818) 354-5011
http://www.jpl.nasa.gov

Donald Savage (202) 358-1727
Headquarters, Washington

Whitney Clavin (818) 354-4673
Jet Propulsion Laboratory

NEWS RELEASE: 2004-257
October 18, 2004

ASTRONOMERS DISCOVER PLANET BUILDING IS BIG MESS

Planets are built over a long period of massive collisions between rocky bodies as big as mountain ranges, astronomers announced today.

New observations from NASA's Spitzer Space Telescope reveal surprisingly large dust clouds around several stars. These clouds most likely flared up when rocky, embryonic planets smashed together. The Earth's own Moon may have formed from such a catastrophe. Prior to these new results, astronomers thought planets were formed under less chaotic circumstances.

"It's a mess out there," said Dr. George Rieke of the University of Arizona, Tucson, first author of the findings and a Spitzer scientist. "We are seeing that planets have a long, rocky road to go down before they become full grown."

Spitzer was able to see the dusty aftermaths of these collisions with its powerful infrared vision. When embryonic planets, the rocky cores of planets like Earth and Mars, crash together, they are believed to either merge into a bigger planet or splinter into pieces. The dust generated by these events is warmed by the host star and glows in the infrared, where Spitzer can see it.

The findings will be published in an upcoming issue of the Astrophysical Journal. They mirror what we know about the formation of our own planetary system. Recent observations from studies of our Moon's impact craters also reveal a turbulent early solar system. "Our Moon took a lot of violent hits when planets had already begun to take shape," Rieke said.

According to the most popular theory, rocky planets form somewhat like snowmen. They start out around young stars as tiny balls in a disc-shaped field of thick dust. Then, through sticky interactions with other dust grains, they gradually accumulate more mass. Eventually, mountain-sized bodies take shape, which further collide to make planets.

Previously, astronomers envisioned this process proceeding smoothly toward a mature planetary system over a few million to a few tens of millions of years. Dusty planet-forming discs, they predicted, should steadily fade away with age, with occasional flare-ups from collisions between leftover rocky bodies.

Rieke and his colleagues have observed a more varied planet-forming environment. They used new Spitzer data, together with previous data from the European Space Agency's Infrared Space Observatory and the joint NASA, United Kingdom and the Netherlands' Infrared Astronomical Satellite. They looked for dusty discs around 266 nearby stars of similar size, about two to three times the mass of the Sun, and various ages. Seventy-one of those stars were found to harbor discs, presumably containing planets at different stages of development. But, instead of seeing the discs disappear in older stars, the astronomers observed the opposite in some cases.

"We thought young stars, about one million years old, would have larger, brighter discs, and older stars from 10 to 100 million years old would have fainter ones," Rieke said. "But we found some young stars missing discs and some old stars with massive discs."

This variability implies planet-forming discs can become choked with dust throughout the discs' lifetime, up to hundreds of millions of years after the host star was formed. "The only way to produce as much dust as we are seeing in these older stars is through huge collisions," Rieke said.

Before Spitzer, only a few dozen planet-forming discs had been observed around stars older than a few million years. Spitzer's uniquely sensitive infrared vision allows it to sense the dim heat from thousands of discs of various ages. "Spitzer has opened a new door to the study of discs and planetary evolution," said Dr. Michael Werner, project scientist for Spitzer at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

"These exciting new findings give us new insights into the process of planetary formation, a process that led to the birth of planet Earth and to life," said Dr. Anne Kinney, director of the universe division in the Science Mission Directorate at NASA Headquarters, Washington. "Spitzer truly embodies NASA's mission to explore the universe and search for life," she said.

JPL manages the Spitzer Space Telescope for NASA's Science Mission Directorate. Artist's concepts and additional information about the Spitzer Space Telescope is available at http://www.spitzer.caltech.edu .

http://www-pao.ksc.nasa.gov/kscpao/release/2004/80-04.htm

News Archive Search  Go!
Show  results per page
 
 
Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writer: Autumn Burdick
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> USA.gov
> ExpectMore.gov
> NASA Advisory Council
> Open Government at NASA
Last Updated: 20 Oct 2004