National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
News & Events
Why LADEE Matters
Why LADEE Matters
29 Apr 2013
(Source: NASA)

Color image of the moon above Earth's atmosphere.
This image shows the moon, Earth's only natural satellite, at center with the limb of Earth near the bottom transitioning into the orange-colored troposphere, the lowest and most dense portion of Earth's atmosphere. The troposphere ends abruptly at the tropopause, which appears in the image as the sharp boundary between the orange- and blue-colored atmosphere. The silvery-blue noctilucent clouds extend far above Earth's troposphere.

Earth's atmosphere is critically important to all of us. In addition to providing us with air to breathe, it protects us from temperature extremes, harmful space radiation, and vast numbers of incoming meteoroids. The atmosphere is a very complex system that we are only beginning to understand. Gaining a better understanding of the atmosphere, how it protects us, and how we can protect it is in all of our interests.

Color image of bluish clouds on the globe of Venus.
A thick veil of clouds high in carbon dioxide perpetually blankets Venus, and its surface temperature approaches 900 degrees Fahrenheit.

In order to understand Earth's atmosphere and how it works, it is essential to study atmospheres under a wide range of conditions beyond Earth. Examining atmospheres on other planets allows this. For example, by studying the atmosphere of Venus, we learned about the role of carbon dioxide as a greenhouse gas, and saw how it drives the temperature on Venus as high as 860 degrees Fahrenheit (460 degrees Celsius).

The moon has a type of atmosphere scientists call a surface boundary exosphere. This very thin atmosphere may actually be the most common type of atmosphere in our solar system. Yet despite occurring so frequently, surface boundary exospheres largely remain a mystery. The moon, Mercury, larger asteroids, many moons orbiting the solar system's giant planets and even some of the distant Kuiper Belt Objects beyond Neptune, all have surface boundary exospheres.

To fully understand atmospheres and how they work, we also need to understand the most common type. Fortunately, the moon is in our own celestial "backyard," and NASA's Lunar Atmosphere and Dust Environment Explorer's (LADEE) observations of the lunar atmosphere and surface conditions will provide us with insights we can apply to many worlds and to Earth's atmosphere.

News Archive Search  Go!
Show  results per page
 
 
Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writer: Autumn Burdick
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> USA.gov
> ExpectMore.gov
> NASA Advisory Council
> Open Government at NASA
Last Updated: 14 Aug 2013