National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
News & Events
Vast Systems of Ancient Caverns on Mars May Have Captured Enormous Floodwaters
Vast Systems of Ancient Caverns on Mars May Have Captured Enormous Floodwaters
4 Dec 2012
(Source: Planetary Science Institute)

Dec. 4, 2012, Tucson, Ariz. -- An international research team led by the Planetary Science Institute has found evidence that indicates that approximately 2 billion years ago enormous volumes of catastrophic floods discharges may have been captured by extensive systems of caverns on Mars, said PSI Research Scientist, J. Alexis Palmero Rodriguez.

Rodriguez and the research team came to this conclusion after studying the terminal regions of the Hebrus Valles, an outflow channel that extends approximately 250 kilometers downstream from two zones of surface collapse.

The Martian outflow channels comprise some of the largest known channels in the solar system. Although it has been proposed their discharge history may have once led to the formation of oceans, the ultimate fate and nature of the fluid discharges has remained a mystery for more than 40 years, and their excavation has been attributed to surface erosion by glaciers, debris flows, catastrophic floodwaters, and perhaps even lava flows, Rodriguez said.

The PSI-led team's work documents the geomorphology of Hebrus Valles, a Martian terrain that is unique in that it preserves pristine landforms located at the terminal reaches of a Martian outflow channel. These generally appear highly resurfaced, or buried, at other locations in the planet. Rodriguez and his co-authors propose in an article titled "Infiltration of Martian overflow channel floodwaters into lowland cavernous systems" published in Geophysical Research Letters that large volumes of catastrophic floodwaters, which participated in the excavation of Hebrus Valles, may have encountered their ultimate fate in vast cavernous systems.

They hypothesize that evacuated subsurface space during mud volcanism was an important process in cavern development. Mud volcanism can expel vast volumes of subsurface volatiles and sediments to the surface. But because evacuation of subsurface materials generally occurs within unconsolidated sediments resulting caverns are transient and mechanically highly unstable.

However, the investigated Martian caverns appear to have developed within permafrost, which at -65 degrees Celsius (-85 degree Fahrenheit) - a typical mean annual surface temperature for the investigated latitudes - has a mechanical strength similar to that of limestone. Limestone rocks host most of the terrestrial cavern systems.

Possible cavern have been recently identified on Mars and their existence has caught much scientific and public attention because of their potential as exobiological habitats. However, their age and dimensions remain uncertain. The discovery of vast caverns that existed in ancient periods of Mars shows that these habitats may have in fact existed during billions of years of the planet's history, Rodriguez said.

PSI Senior Scientist Mary Bourke and Research Scientist Daniel C. Berman are co-authors on the paper.

This research was funded by a grant to PSI from the NASA Mars Data Analysis Program.


CONTACT:
J. Alexis Palmero Rodriguez
Research Scientist
alexis@psi.edu

PSI INFORMATION:
Mark V. Sykes
Director
520-622-6300
sykes@psi.edu

PSI HOMEPAGE:
http://www.psi.edu

News Archive Search  Go!
Show  results per page
 
 
Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writer: Autumn Burdick
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> USA.gov
> ExpectMore.gov
> NASA Advisory Council
> Open Government at NASA
Last Updated: 4 Dec 2012