National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
News & Events
Cassini Finds Warm Cracks on Enceladus
Cassini Finds Warm Cracks on Enceladus
30 Nov 2010
(Source: NASA/JPL)

Black and white image of the surface of Enceladus with hot spots indicated by bright colors.
Cassini data have enabled scientists to make the highest-resolution heat intensity maps yet for the hottest part of a 'tiger stripe' fissure on Saturn's moon Enceladus.

New images and data from NASA's Cassini spacecraft give scientists a unique Saturn-lit view of active fissures through the south polar region of Saturn's moon Enceladus. They reveal a more complicated web of warm fractures than previously thought.

A black and white diagram of Enceladus' surface with hot areas marked by bright colors.
This heat intensity map of the hottest part of a 'tiger stripe' fissure on Enceladus reveals never-before-seen details of warm fractures that branch off like split ends from the ends of the main trenches of two 'stripes.'

The new images are available at: http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini.

Scientists working jointly with Cassini's composite infrared spectrometer and its high-resolution imaging camera have constructed the highest-resolution heat intensity maps yet of the hottest part of a region of long fissures spraying water vapor and icy particles from Enceladus. These fissures have been nicknamed "tiger stripes." Additional high-resolution spectrometer maps of one end of the tiger stripes Alexandria Sulcus and Cairo Sulcus reveal never-before-seen warm fractures that branch off like split ends from the main tiger stripe trenches. They also show an intriguing warm spot isolated from other active surface fissures.

"The ends of the tiger stripes may be the places where the activity is just getting started, or is winding down, so the complex patterns of heat we see there may give us clues to the life cycle of tiger stripes," said John Spencer, a Cassini team scientist based at Southwest Research Institute in Boulder, Colo.

The images and maps come from the Aug. 13, 2010, Enceladus flyby, Cassini's last remote sensing flyby of the moon until 2015. The geometry of the many flybys between now and 2015 will not allow Cassini to do thermal scans like these, because the spacecraft will be too close to scan the surface and will not view the south pole. This Enceladus flyby, the 11th of Cassini's tour, also gave Cassini its last look at any part of the active south polar region in sunlight.

Black and white image showing the dark crescent of Enceladus against the brighter crescent of Saturn.
Small water ice particles fly from fissures in the south polar region of Saturn's moon Enceladus in this image taken during the Aug. 13, 2010, flyby of the moon by Cassini.

The highest-resolution spectrometer scan examined the hottest part of the entire tiger stripe system, part of the fracture called Damascus Sulcus. Scientists used the scan to measure fracture temperatures up to190 Kelvin (minus 120 degrees Fahrenheit). This temperature appears slightly higher than previously measured temperatures at Damascus, which were around 170 Kelvin (minus 150 degrees Fahrenheit).

Spencer said he isn't sure if this tiger stripe is just more active than it was the last time Cassini's spectrometer scanned it, in 2008, or if the hottest part of the tiger stripe is so narrow that previous scans averaged its temperature out over a larger area. In any case, the new scan had such good resolution, showing details as small as 800 meters (2,600 feet), that scientists could see for the first time warm material flanking the central trench of Damascus, cooling off quickly away from the trench. The Damascus thermal scan also shows large variations in heat output within a few kilometers along the length of the fracture. This unprecedented resolution will help scientists understand how the tiger stripes deliver heat to the surface of Enceladus.

Cassini acquired the thermal map of Damascus simultaneously with a visible-light image where the tiger stripe is lit by sunlight reflecting off Saturn. The visible-light and thermal data were merged to help scientists understand the relationships between physical heat processes and surface geology.

"Our high-resolution images show that this section of Damascus Sulcus is among the most structurally complex and tectonically dynamic of the tiger stripes," said imaging science team associate Paul Helfenstein of Cornell University, Ithaca, N.Y. Some details in the appearance of the landforms, such as a peculiar pattern of curving striations along the flanks of Damascus, had not previously been noticed in ordinary sunlit images.

Black and white image showing cratered and fractured surface of Tethys.
Geologic faults among craters on Saturn's moon Tethys are depicted in this image captured during a flyby of the moon by NASA's Cassini spacecraft on Aug. 14, 2010.

The day after the Enceladus flyby, Cassini swooped by the icy moon Tethys, collecting images that helped fill in gaps in the Tethys global map. Cassini's new views of the heavily cratered moon will help scientists understand how tectonic forces, impact cratering, and perhaps even ancient resurfacing events have shaped the moon's appearance.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo. The composite infrared spectrometer team is based at NASA's Goddard Space Flight Center, Greenbelt, Md., where the instrument was built.

More details are also available at the imaging team's website http://ciclops.org and the composite infrared spectrometer team's website http://cirs.gsfc.nasa.gov .


Jia-Rui C. Cook 818-354-0474
Jet Propulsion Laboratory, Pasadena, Calif.
jccook@jpl.nasa.gov
Nancy Neal Jones/Elizabeth Zubritsky 301-286-0039/301-614-5438
Goddard Space Flight Center, Greenbelt, Md.
nancy.n.jones@nasa.gov/elizabeth.a.zubritsky@nasa.gov
Joe Mason 720-974-5859
Space Science Institute, Boulder, Colo.
jmason@ciclops.org .
2010-402

News Archive Search  Go!
Show  results per page
 
 
Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writer: Autumn Burdick
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> USA.gov
> ExpectMore.gov
> NASA Advisory Council
> Open Government at NASA
Last Updated: 30 Nov 2010