National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
News & Events
NASA Finds Evidence for New Molecular Structure in Space
NASA Finds Evidence for New Molecular Structure in Space
11 Apr 2007
(Source: NASA Headquarters)

MOFFETT FIELD, Calif. - NASA scientists have discovered evidence that a mysterious red glow, seen throughout the Milky Way and other galaxies but never on Earth, radiates from extremely fine dust clusters that cause the glow by combining molecular forces that oppose each other.

Researchers theorize that the red glow, called the Extended Red Emission (ERE), is due to a very unusual form of charged molecular clusters. Measured in billionths of a meter (billionths of a yard), these tiny clusters are made of carbon-rich molecules called polycyclic aromatic hydrocarbons (PAHs) that are chicken-wire shaped. Astronomers have been unable to explain the red glow for more than 30 years, even though PAHs were implicated. The highly luminescent source material requires very harsh ultraviolet radiation, a radiation field so strong that most known polyatomic interstellar molecules would be destroyed. NASA Ames Research Center has been a leader in the study of PAHs under the direction of Ames Astrochemistry Laboratory led by Dr. Louis Allamandola.

We have been studying polycyclic aromatic hydrocarbon molecules (PAHs) in the laboratory at NASA Ames Research Center for a long time, and although I had results that strongly supported the idea that PAHs had something to do with the ERE, the experimental results made it clear that if PAHs were involved, they were present in some as-yet unknown exotic form," said Murthy Gudipati of the University of Maryland and NASA Ames, who recently joined NASAs Jet Propulsion Laboratory after many years of close collaboration with Allamandola.

"These types of highly reactive species are simply not readily accessible for laboratory study, but need very special conditions, added Gudipati. Through a combined effort of laboratory and theoretical chemistry calculations, the current advance in knowledge was made.

Using advanced computational methods, scientists found that the red glow is indeed carried by unusual clusters of polycyclic aromatic hydrocarbon molecules. Highly developed tests confirm the presence of opposing properties within each cluster; they are charged and highly reactive, yet simultaneously, they have a stable, closed-shell electron configuration as does any stable molecule on Earth.

Recent advances in theoretical techniques made it possible to tackle this problem computationally.

Significant difficulties involved in the modeling of charge transfer within large molecular systems required an entirely new approach, said Dr. Timothy Lee, astrochemist and chief of the Space Science and Astrobiology Division at NASA Ames.

"Once we convinced ourselves that our new approach could handle these strange particles, I was able to simulate the detailed emission process on molecular systems much larger than any that had been done before," said Young Min Rhee, postdoctoral fellow at the University of California, Berkeley, and the lead author of the paper published last month in the Proceedings of the National Academy of Sciences. "Our simulation shows that this type of charged PAH cluster can account for the ERE while satisfying the physical requirements necessary to survive the harsh interstellar conditions continued Rhee.

According to scientists, this research has important implications in other areas as well, including combustion processes and exotic nano-materials. For instance, the formation of soot particles produced by diesel and jet engine combustion is not well understood. Self-forming PAH clusters may be the key step to understanding this process. Evidence suggests there is closed-shell charged PAH ions in flames, and the highly robust yet unusual closed-shell PAH clusters described here may be the soot nucleation sites in flames, a result that has been long anticipated.

For more information, please visit:

For more information about NASA and agency programs on the Web, visit:

News Archive Search  Go!
Show  results per page
Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writers: Courtney O'Connor and Bill Dunford
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> NASA Advisory Council
> Open Government at NASA
Last Updated: 11 Apr 2007