National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
News & Events
NASA Satellite Identifies the Earth's Most Intense Thunderstorms
NASA Satellite Identifies the Earth's Most Intense Thunderstorms
27 Oct 2006
(Source: NASA Headquarters)

A summer thunderstorm often provides much-needed rainfall and heat wave relief, but others bring large hail, destructive winds, and tornadoes. Now with the help of NASA satellite data, scientists are gaining insight into the distribution of such storms around much of the world.

These images show a snapshot of thunderstorms over Texas on April 30, 2004, using data from the TRMM satellite.
These images show a snapshot of thunderstorms over Texas on April 30, 2004, using data from the TRMM satellite.
By using data from the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, a study published in the August 2006 issue of the Bulletin of the American Meteorological Society identified the regions on Earth that experience the most intense thunderstorms. The strongest storms were found to occur east of the Andes Mountains in Argentina, where warm, humid air often collides with cooler, drier air, similar to storms that form east of the Rockies in the United States. Surprisingly, some semi-arid regions have powerful storms, including the southern fringes of the Sahara, northern Australia, and parts of the Indian subcontinent. In contrast, rainy areas such as western Amazonia, Southeast Asia, and Indonesia experience frequent storms, but relatively few are severe. Northern Pakistan, Bangladesh, and parts of Central Africa also experience intense thunderstorms.

"TRMM has given us the ability to extend local knowledge about storms to a near-global reach," said lead author Edward Zipser, University of Utah, Salt Lake City, Utah. "In addition to containing the only precipitation radar in space, TRMM's other instruments provide a powerful overlap of data that is extremely useful for studying storms."

This map reveals the uneven distribution of worldwide lightning with color variations indicating the average annual number of lightning flashes per square kilometer.
This map reveals the uneven distribution of worldwide lightning with color variations indicating the average annual number of lightning flashes per square kilometer.
The researchers examined global thunderstorm data supplied by TRMM from 1998-2004. To determine an individual storm's intensity, they specifically examined the height of radar echoes, radiation temperature, and lightning flash rate, each measured by separate TRMM instruments.

The study also confirmed previous findings. For example, the locations of the heaviest rainfall on Earth - usually in tropical oceans and along certain mountain slopes - rarely coincide with the regions of most intense storms. They also found that the strongest storms tend to occur over land, rather than over the oceans.

"Prior to TRMM, we could only study individual storms that were captured by a ground-based radar or lightning network," said co-author Daniel Cecil, University of Alabama-Huntsville, Huntsville, Ala. "Those instruments are not available in many places and trying to find an interesting storm that was simultaneously observed by a satellite required remarkable luck; but TRMM has been supplying a variety of measurements from individual storms around the world for nearly nine years now."

While each TRMM instrument measures different aspects of a storm, the researchers found that the data from each usually matched quite well, agreeing on the location and distribution of the strongest storms.

"The results from this study help to quantify the differences in the type and intensity of thunderstorms that occur in different climate regimes around the world," said Cecil. "The effects on the atmosphere of an intense, monstrous thunderstorm over Argentina or Oklahoma contrasts greatly with the effects from a more ordinary storm over the Amazon basin."

In the future, and as the dataset from TRMM continues to increase, these observations will be used to test whether computer models used for climate prediction and weather forecasting are accurately capturing the details of thunderstorms. If not, scientists will have the details necessary to build better, more realistic models that will aid meteorologists in providing more accurate forecasts.

The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA) designed to monitor and study tropical rainfall.

News Archive Search  Go!
Show  results per page
 
 
Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writer: Autumn Burdick
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> USA.gov
> ExpectMore.gov
> NASA Advisory Council
> Open Government at NASA
Last Updated: 12 Jan 2007