National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
News & Events
FUSE Spacecraft Finds Infant Solar System Awash in Carbon
FUSE Spacecraft Finds Infant Solar System Awash in Carbon
7 Jun 2006
(Source: NASA Headquarters)

Scientists using NASA's Far Ultraviolet Spectroscopic Explorer, or FUSE, have discovered abundant amounts of carbon gas in a dusty disk surrounding a well-studied young star named Beta Pictoris.

The star and its emerging solar system are less than 20 million years old, and planets may have already formed. The abundance of carbon gas in the remaining debris disk indicates that the star's planets could be exotic, carbon-rich worlds of graphite and methane. Or conversely, the scientists say, Beta Pictoris and its environs might resemble our own solar system in its early days.

A team led by Dr. Aki Roberge of NASA Goddard Space Flight Center in Greenbelt, Md., presents the FUSE observation in the June 8 issue of Nature. The new measurements make Beta Pictoris the first disk of its kind whose gas has been comprehensively studied. The discovery settles a long-standing scientific mystery about how the gas has lingered in this debris disk yet raises new questions about the development of solar systems.

"There is much, much more carbon gas than anyone expected," said Roberge, a NASA Postdoctoral Fellow and lead author on the Nature report. "Could this be what our own solar system looked like when it was young? Are we seeing the making of exotic, new worlds? Either prospect is fascinating."

Beta Pictoris, about 60 light years away, is 1.8 times more massive than our sun. This young star's disk was discovered in 1984. Earlier observations have hinted that a Jupiter-like planet may have already formed in this disk and that rocky terrestrial planets may be forming. Such planets would be too small and faint to observe with current instruments.

The carbon gas detected by FUSE comes from unseen asteroids or comets orbiting the star. These collide with each other, releasing material in a process similar to how NASA's Deep Impact probe liberated dust and gas from within comet Tempel 1 last year.

The terrestrial planets in our solar system---Mercury, Venus, Earth and Mars---formed from the collision of smaller planetary bodies such as asteroids about 5 billion years ago. During the few hundred million years after Earth was formed, asteroids and comets might have smashed into our planet to deliver virtually all of the water and organic material we see today. These materials are the building blocks of life on Earth.

Asteroids and comets orbiting Beta Pictoris might contain large amounts of carbon-rich material, such as graphite and methane. Planets forming from or impacted by such bodies would be very different from those in our solar system and might have methane-rich atmospheres, like Titan, a moon of Saturn.

"We have learned in the past ten years is that our galaxy is filled with other solar systems, and each one is different from the next," said Dr. Marc Kuchner of NASA Goddard, an expert on extra-solar planets. "If carbon-rich worlds are forming in Beta Pictoris, they might be covered with tar and smog, with mountains made of giant diamonds. Life on such a planet is not implausible, but it certainly would be exotic."

A second possibility is that Beta Pictoris might be similar to our solar system long ago. While local asteroids and comets don't seem carbon-rich today, some research suggests that certain meteorites called enstatite chondrite meteorites formed in a carbon-rich environment, and some scientists speculate that Jupiter has a carbon core.

"We might be observing processes that occurred early in our solar system's development," said Nature co-author Dr. Alycia Weinberger of the Carnegie Institution of Washington.

The mere presence of gas in the Beta Pictoris disk has been a mystery. Theoretical models predict that intense light from the young star should rapidly blow the gas away. The overabundance of carbon gas, discovered now for the first time, solves this mystery. Carbon has special properties that keep the gas in orbit around the star.

Other co-authors on the report are Dr. Paul Feldman, Johns Hopkins University, Baltimore; and Drs. Magali Deleuil and Jean-Claude Bouret, Laboratoire d'Astrophysique de Marseille in France. The FUSE project is a NASA Explorer mission developed in cooperation with the French and Canadian space agencies by Johns Hopkins University in Baltimore; University of Colorado, Boulder; and University of California, Berkeley. NASA Goddard manages the program for NASA's Science Mission Directorate.

News Archive Search  Go!
Show  results per page
Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writers: Courtney O'Connor and Bill Dunford
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> NASA Advisory Council
> Open Government at NASA
Last Updated: 7 Jun 2006