National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
News & Events
A Planet Colder Than It Should Be
A Planet Colder Than It Should Be
4 Jan 2006
(Source: Harvard-Smithsonian Center for Astrophysics)

Mercury is boiling. Mars is freezing. The Earth is just right. When it comes to the temperatures of the planets, it makes sense that they should get colder the farther away they are from the Sun. But then there is Pluto. It has been suspected that this remote world might be even colder than it should be. Smithsonian scientists now have shown this to be true. Scientists continue to discuss whether Pluto is a planet or should be considered a refugee from the Kuiper belt. Whatever its classification, Pluto and its moon Charon are certain to harbor secrets about the early history of planet formation. Charon is roughly half the diameter of the planet itself, and they form a unique pair in our solar system. How they came to be together remains a mystery. Previous research suggested the surface of Pluto might be colder than it should be, unlike Charon's. However, no telescope capable of directly measuring their thermal emission (their heat) was able to peer finely enough to distinguish the two bodies. Their close proximity presented a formidable challenge since they are never farther apart than 0.9 arcseconds, about the length of a pencil seen from 30 miles away. Now, for the first time, Smithsonian astronomers using the Submillimeter Array (SMA) on Mauna Kea in Hawaii have taken direct measurements of thermal heat from both worlds and found that Pluto is indeed colder than expected, colder even than Charon. "We all know about Venus and its runaway greenhouse effect," said Mark Gurwell of CfA, co-author on this study along with Bryan Butler of the National Radio Astronomy Observatory. "Pluto is a dynamic example of what we might call an anti-greenhouse effect. Nature likes to leave us with mysteries - and this was a big one." During the observations, the SMA utilized its most extended configuration to obtain high-resolution interferometric data, allowing separate "thermometer" readings for Pluto and Charon. It found that the temperature of the ice-covered surface of Pluto was about 43 K (-382 degrees F) instead of the expected 53 K (-364 degrees F), as on nearby Charon. This fits the current model that the low temperature of Pluto is caused by equilibrium between the surface ice and its thin nitrogen atmosphere, not just with the incoming solar radiation. Sunlight (energy) reaching the surface of Pluto is used to convert some of the nitrogen ice to gas, rather than heat the surface. This is similar to the way evaporation of a liquid can cool a surface, such as sweat cooling your skin. "These results are really exciting and fun as well," said Gurwell. "Imagine taking something's temperature from almost three billion miles away without making a house call!"

News Archive Search  Go!
Show  results per page
 
 
Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writer: Autumn Burdick
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> USA.gov
> ExpectMore.gov
> NASA Advisory Council
> Open Government at NASA
Last Updated: 11 May 2011