National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
Multimedia
Facebook Twitter YouTube Facebook Twitter YouTube Flickr iTunes
Follow Us
Shoemaker-Levy 9: Fragment N
Shoemaker-Levy 9: Fragment N (click to enlarge)
 
 

Shoemaker-Levy 9: Fragment N
Date: 20 Jul 1994

This image shows the direct impact of Shoemaker-Levy fragment N into Jupiter. These data were recorded by the camera aboard the Galileo spacecraft, as it was en route to Jupiter. This gray-scale image is shown in false-color to enhance visibility of the impact flash.


The entire picture covers the duration 10:28:13 UT to 10:30:40 UT on 1994 July 20 (times are those at which an earth-based observer would have received the light from Jupiter). The bright swaths are the planet Jupiter, scanned across the CCD detector. The N impact is seen just off the left (terminator) side of the central swath.


This "drift-scan" observation was made using the near-infrared 889-nm (methane band) filter, which reduces the brightness of Jupiter relative to the impact flash. This is effectively a multiple-exposure, intentionally smeared picture of Jupiter. The same filter and observing mode were used for fragment K, so the two data sets can be compared directly. This mode serves to increase sensitivity, time coverage, and time sampling; it also permits data to be returned more efficiently than for other imaging modes with Galileo's small, back-up antenna. Jupiter was allowed to drift across the detector for about 25 seconds before the camera was repositioned for the next swath. Altogether there are five separate 25 sec long swaths of Jupiter; they were laid down at an angle, so that any impact events would not be overlapped by Jupiter itself.


The horizontal stripes appear because not all of the data will be returned to Earth. To allocate downlink time for playback of data from other events and other instruments aboard Galileo, only about 4 out of every 12 lines were relayed to Earth. However, the gaps are no longer than about 0.6 seconds, and within each group of lines the time resolution is 0.072 sec.


There is some confusion in the search for impact events in these N data due to the presence of trails of Jupiter's Galilean satellites (the very faint, blue trails seen between and to the sides of the Jupiter swaths). By chance, the trails of satellites Io and Europa (caused by multiple exposure from adjacent swaths) lie in nearly the same place as a trail from any potential impact event. However, the brightness of the satellite trails is much less than that of the N impact and does not significantly affect the data quality. Furthermore, the satellite trails (and Jupiter trails) follow a well-defined pattern from the periodically repeated jitter of the spacecraft's scan platform.


At the time of the observations, the Galileo spacecraft was about 1.5 astronomical units (about 150 million miles) from Jupiter on its way to a rendezvous with that planet in December 1995. The camera resolution was about 2500 km/pixel. From Galileo's viewpoint, the impact site was on the dark side of Jupiter, but directly visible to the camera. For observers on earth, the impact site was just beyond limb, on the half of Jupiter we could not see, so Galileo has provided the only direct pictures of the comet impacts.


At its peak brightness, the N impact was about half as bright as the peak of the K impact, or about 4% of the total brightness of Jupiter (at this phase angle of 51 deg and in this methane-band filter). The detected flash begins at about 10:29:17 UT and lasts for about 14 seconds. The lightcurve of the event rises very rapidly in the first couple seconds, as in other events detected by Galileo; but, unlike the others, it does not extend very long in time. Our preliminary interpretation is that we are seeing primarily the bolide (meteor) phase of the event and little of the ensuing fireball, probably because this event was less energetic than the others we have observed.

Credit: NASA



Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writer: Autumn Burdick
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> USA.gov
> ExpectMore.gov
> NASA Advisory Council
> Open Government at NASA
Last Updated: 14 Jul 2014