National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
Multimedia
Flamsteed Region
Flamsteed Region (click to enlarge)
 
 

Flamsteed Region

Browsing around the Flamsteed region, you might notice that a lot of the craters here have odd features, including flat floors, raised floors, or rings that look like one crater nested within another.

Black and white image of odd-shaped craters.
The unusual shapes of craters at the Flamsteed region of interest provide information about the thickness of the lunar regolith in this region.

In the image to the right, the crater in the middle top displays a ring within its main (degraded) rim, and the crater just below it has a flat floor, compared to the typical bowl-shaped craters in the surroundings. These type of features occur when a crater forms partly in rocky material and partly in regolith. The term regolith refers to all of the fragmental material - dust and rocks of all sizes - that covers the Moon's surface and is created by impact events which continually pulverize the bedrock. When planning for lunar surface activities, engineers were concerned that this dusty, sandy surface wouldn't be stable for the spacecraft and Apollo astronauts that were to land there, so scientists worked out methods to estimate the thickness of the regolith ahead of time.

Using images from Lunar Orbiter and laboratory experiments with a high-velocity vertical gun, a relationship between regolith thickness and the shape of a crater was developed. If the regolith is thin compared to the depth of the crater, the crater forms an inner ring. If the regolith is a little thicker, the crater develops a flat floor, and if thicker still then the crater is bowl-shaped.

The crater shapes in the Flamsteed region of interest demonstrate that the regolith is very thin (on average just a couple meters thick). This is because this is the site of some of the youngest volcanism on the Moon, and since the surface is younger, it hasn't had as much time to get beat up by impacts. Samples from the bedrock beneath this thin regolith could give insight into the duration of volcanic activity on the Moon, and the evolution of lunar volcanism as the Moon aged and cooled.

Credit: NASA/Goddard Space Flight Center/Arizona State University



Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writer: Autumn Burdick
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> USA.gov
> ExpectMore.gov
> NASA Advisory Council
> Open Government at NASA
Last Updated: 3 Jan 2013