National Aeronautics and Space Administration Logo
Follow this link to skip to the main content NASA Banner
Solar System Exploration
Multimedia
Closer Look at Lunar Highland Crust
Closer Look at Lunar Highland Crust (click to enlarge)
 
 

Closer Look at Lunar Highland Crust
Date: 5 Dec 2012

This image depicting the porosity of the lunar highland crust was derived using bulk density data from NASA's GRAIL mission and independent grain density measurements from NASA's Apollo moon mission samples as well as orbital remote-sensing data. Red corresponds to higher than average porosities and blue corresponds to lower than average porosities. White denotes regions that contain mare basalts (thin lines) and that were not analyzed.

The 12 percent average porosity of the highland crust is a consequence of fractures generated by billions of years of impact cratering. The crustal porosities in the interiors of many impact basins are lower than their surroundings, a result of high temperatures experienced at the time of crater formation. In contrast, the porosities immediately exterior to many impact basins are higher than average as a result of fracturing by impact-generated shock waves and the deposition of impact ejecta.

Credit: NASA/JPL-Caltech/ IPGP



Awards and Recognition   Solar System Exploration Roadmap   Contact Us   Site Map   Print This Page
NASA Official: Kristen Erickson
Advisory: Dr. James Green, Director of Planetary Science
Outreach Manager: Alice Wessen
Curator/Editor: Phil Davis
Science Writer: Autumn Burdick
Producer: Greg Baerg
Webmaster: David Martin
> NASA Science Mission Directorate
> Budgets, Strategic Plans and Accountability Reports
> Equal Employment Opportunity Data
   Posted Pursuant to the No Fear Act
> Information-Dissemination Policies and Inventories
> Freedom of Information Act
> Privacy Policy & Important Notices
> Inspector General Hotline
> Office of the Inspector General
> NASA Communications Policy
> USA.gov
> ExpectMore.gov
> NASA Advisory Council
> Open Government at NASA
Last Updated: 5 Dec 2012