
Classical way to apply changes in an space instrument
Usually, changes are done by software (SW) using partial modifications (patches)
or full modification (new software version). Patches are not easy to create, because
they must be run respecting the current SW state. However they optimize the
communications link that is critical in deep space missions. A new SW version is
easier to produce but multiply the resources needed in the communications link.

Five states,
five transitions
to encode

Flat state machine Hierarchical state
machine0

Four states,
four transitions
to encode

MEDUSA State “Optical + Dust” state encoding
Address Data

Present state Encoding Inputs Next State

Idle 000
000 Idle

001 Laser

Laser 001

000 Laser

001 Idle

010 Calibration

Calibration 010

000 Calibration

001 Idle

010 WaitParam

WaitParam 011
000 WaitParam

001 Acquisition

Acquisition 100

000 Acquisition

001 Idle

010 Idle

100 Idle

Consejo Superior de Investigaciones Científicas
Instituto de Astrofísica de Andalucía

Hierarchical design MEDUSA experiment

PSM stored in RAM for the MEDUSA experiment

Address Data

Acquisition State
Encoding

Acquisition
Inputs Encoding

Next State
Encoding

1 0 0 0 0 1 0 0 0

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 2 Bit 1 Bit 0

NEW CONTROL SYSTEM FOR SPACE INSTRUMENTS.
APPLICATION FOR MEDUSA EXPERIMENT

B. Aparicio del Moral(1), J.M. Jerónimo Zafra(1), J.F. Rodríguez Gómez(1), R. Sanz Mesa(1), R.
Morales Muñoz(1), A. Rodríguez Trinidad(1), J.J. López Moreno(1) and the International
MEDUSA Team
(1) IAA - CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain, Email:{bea, jeronimo, julio, sanz, rmorales, art, lopez}@iaa.es

Electonics Main Board developed at the IAA

Why to change the space instrument activities?
Usually every instrument has to perform a

sequence of actions.
To perform changes in this sequence of

operations is a typical activity after the launch.
The main reasons to perform changes are
related with unexpected hardware (HW)

malfunction, HW efficiency loss, software (SW)
errors or modifications in the mission

objectives.

A different concept of changing sequences
Our experience in other space missions [5], [6], [7] have demonstrated that
changes are necessary. But it would be desirable a method of changing that not
saturate the communication link.
The main idea is to do the sequence using a programmable finite state machine,
avoiding this way a microprocessor.
This can give us the possibility of changing the sequence on the fly; while we are
executing one step of the sequence, the next step can be changed. This is possible
because the sequence is stored in a Random Access Memory (RAM). Moreover, a
change in one step of the sequence will be cheaper in terms of communication
resources than the same change done by using SW patches.

State machines
A Finite State Machine (FSM) is a model of behavior of a system with inputs and
outputs, where the outputs depend not only on the current inputs, but previous.
The state machines are defined as a set of states that acts as intermediary in this
input-output relationship, making the history of the inputs signals determine for a
moment a state for the machine. That way the output depends only on the current
inputs and the state.

Conclusions and future work
This poster shows a new method to control complex systems using a Programmable Hierarchical Finite State
Machine stored in RAM. This method allows us to have a complete control of the whole system with minimum
onboard software, and reduced size of memory.
The key idea is using the address bus to encode states and transitions. The address bus encodes two items: one state
and one input that have reaction with it. The datum for this address encodes the state to jump to.
One of the main advantages of using this method is the possibility of using reduced memory size and the fast way of
change the PSM, by only writing in RAM.
In order to test the goodness of the state machine in front of a microprocessor we are now developing new tests
using a breadboard designer for MEDUSA experiment. We are going to use a FPGA with a 8051 core to compare it
with the FSM stored and the manager.
The advantage of this method is that we only have to do one reading each time that it is necessary to change the
state, without any extra selection algorithm. This allows the possibility of change the RAM content while we are
executing one state, as the next state only will be read when the input changes. Obviously, this is possible but it is
recommended to take appropriate safety measures before doing it.

IPPW-7

APPLICATION TO MEDUSA EXPERIMENT
The MEDUSA, Martian Environmental Dust Systematic Analyser instrument, is composed of a set of
sensors to provide information about cumulative dust mass flux and dust deposition rate, physical and
electrification properties of dust, size distribution of sampled particles, and correlation between water
vapour abundance and time [16]. MEDUSA is a set of several subsystems.

Optical and dust collection stage
This stage is allocated inside a sample volume. A laser diode source provides light that is scattered by dust particles that pass through
the sampling volume [16]. Two mirrors are used to concentrate the forward and backward scattered lights onto two photo-diode based
detectors, working in photovoltaic mode. The collected particles fall onto a quartz crystal microbalance. Microbalances (MBs) are
sensitive to the total deposited mass and they are well suited to measure the mass of micron/sub-micron particles. Its transducer is
based on piezoelectric effect and gives as output a frequency modulated signal which is proportional to the mass deposited on the
sensor. It is necessary to take into account that the output signal frequency of these devices is also highly temperature dependent;
therefore it is advisable when reading to obtain the value of this parameter also.
The optical detectors and the quartz crystal microbalance give also the exact count of the number of particles inside sampling volume.
To collect particles inside the stage at a constant speed, a pump creates a laminar flux.

Water vapour Microbalance Stage
This stage detects water vapour in the atmosphere. It is based in a microbalance with an internally integrated Peltier and a thermistor
for thermal control. The subsystem detects the water vapour by cooling the sensor under the frost point with the Peltier, and
monitoring the deposition curve. This allows deriving the condensation behavior in the Mars atmosphere. The water frosts on the
microbalance making the oscillation frequency change, due to the variation of weight. Then we can determinate the atmospheric
vapour partial pressure and relative humidity at the time of measurement.

Dust Deposition and Electrification Stage (DDES)
This stage is constituted by three sensors: dust deposition sensor, dust electrification sensor, and a laser anemometer. It is equipped
with its own microcontroller and it was thought as an independent instrument in which power supply and spacecraft communication
are provided by the Main Electronics.

Main Electronics
The Main Electronics (ME) is in charge of management of all the subsystems explained above and the interface with platform central
unit for telecommands, telemetry and signals conditioning. It is allocated in the common electronics box to the whole platform. The
ME includes also power conversion and conditioning to satisfy MEDUSA needs. The Instituto de Astrofísica de Andalucía (CSIC) is
responsible of the design, construction and verification of the Main Electronics and the onboard SW.

Transition 2

Transition 1

A

B

p

qs

r

Transition 2

Transition 1

A

p

q

s

r

FSM
encoding

State A: 000

State p: 001

State q: 010

State r: 011

State s: 100

FSM
encoding

State p: 00

State q: 01

State r: 10

State s: 11

Two states,
two transitions
to encode

FSM encoding

State A: 0

State B: 1

Most practical systems have a very large number of states of transitions and the
representation and analysis become difficult. We can solve this problem by using
hierarchy [12]. In a hierarchical FSM, a state can be turned in another FSM.
We will call the inside FSM the slave, and the outside the master.

State and transitions storage
In order to make the system a programmable FSM, it is necessary to store the
states and transitions in a rewritable storage (i.e. a RAM). Therefore, by
rewriting the RAM it is possible to have a new FSM.
We use the address bus to encode the present state and also to encode the
maximum number of inputs affecting this state. The stored datum in a particular
address will be the next state of the Programmable State Machine (PSM). The
data for the non reachable addresses will correspond to a dummy transition to
the present state.

Implementation of the method
To analyze and apply the memory contents, we need a programmable device.
I.e. a FPGA (Field Programmable Gate Array). Therefore we need a manager
and an address generator to control the machine. In the figure below we can see
the control system for the state machine inside a FPGA.

Hierarchical FSM with Bk2 and Bk3 blocks working simultaneously

In the figure we can see the difference
between states and functional blocks.
States are represented using circles and
functional blocks are represented using
squares. In state St1, there are two
functional blocks (Bk2 and Bk3) working
concurrently. In the state St2 there is only
one functional block (Bk1) working. Only
one state can run at the same time, but the
blocks inside it run concurrently

The external RAM stores the state machine. The block “system” is one of the
blocks to be controlled. Each block working simultaneously will have its own
manager. The manager knows which the present state is, and can use the inputs
to that state to decide whether to change the state or not. There is a multiplexer
to select in each case which are the relevant inputs to the state. The manager
controls the multiplexer by sending the present state.
The address generator composes the address to read by knowing the present
state and the current inputs. It is started by the manager, which will read the
RAM data and put the system in the next state.

References
1. N. Zacher and D. Kumar, Automated FSM Error Correction for Single Event Upsets. 2004 MAPLD International Conference.
2. Zhang, Sam Zhong. Creating safe state machines. Mentor Graphics white paper. 2002.
3. Cummings, Clifford E. Coding and scripting techniques for FSM desing with synthesis-optimized, glitch-free ouputs. Synopsys User Group Conference SNUG 2000 www.snug-universal.org.
4. Chapman, Ken ,PicoProcessors. October/November de 2003, IEE Computing & Control Engineering.
5. U. Keller et al, OSIRIS – The Scientific Camera System Onboard Rosetta. H. [ed.] Springer Netherlands. No. 1-4, 2007, Space Science Reviews, Vol. 128, pp. 433-506. 0038-6308 (Print) 1572-9672 (Online).
6. J.M. Castro Marín, V. J. G. Brown, A. C. López-Jiménez, J. Rodríguez Gómez, Mechanism controller system for the optical spectroscopic and infrared remote imagin system instrument on board the Rosetta space mission. [ed.] American Institute of Physics. No. 5, May 2001, Review of Scientific Instruments, Vol. 72, pp. 2423-2427.
7. L. Colangeli et al, The Grain Impact Analyser and Dust Accumulator (GIADA) Experiment for the Rosetta Mission: Design, Performances and First Results. [ed.] Springer Netherlands. No. 1-4, 2007, Space Science Reviews, Vol. 128, pp. 803-821. DOI 10.1007/s11214-006-9038-5 .
8. Engbersen, J. van Lunteren, J. Bostian, B.Carey, C. Larsson, XML Accelerator Engine.. New York, NY, USA : s.n., May 2004. Workshop on High Performance XML Processing, in conjunction with the 13th International World Wide Web Conference (WWW2004).
9. Wangyang Lai, Chin-Tau Lea, A programmable State Machine Arquitecture for Packet Processing. No. 4, Jul/Aug, 2003, IEEE Micro, Vol. 23, págs. 32-42.
10. Chakraborty, Samarjit, Formal Languages and Automata Theory. Regular Expressions and Finite Automata. march de 2003, Computer Engineering and Networks Laboratory. Swiss Federal Institute of Technology (ETH) Zürich, pág. 17.
11. Sharker Sarwary, Michael A. Beaver. A systematic approach to verifying FSMs. EDN: Electronic Design News. October 27, 2005.
12. Harel, D, State charts: A visual formalism for complex systems. 1987, Science on computer programming, Vol. 8, págs. 231-274.
13. Alain Girault, Bilung Lee, and Edward A. Lee, Hierarchical Finite State Machines with multiple Concurrency Models. 6, June de 1999, IEEE Transactions on computer-aided design of integrated circuits and systems, Vol. 18.
14. Cummings, Clifford E. State Machine coding styles for Synthesis. Synopsys User Group Conference SNUG 1998.
15. Sklyarov, Valery, Hierarchical Finite-State Machines and Their Use for Digital Control. 1999, IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. 7, no. 2, pp. 222-228
16. L. Colangeli et al, MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour. 2008, Planet. Space Sci. doi:10.1016/j.pss.2008.07.013.

This method uses the address bus to encode states and
transitions. The address bus encodes two items: one
state and one input that have reaction with it. The
datum for this address encodes the state to jump to.

	Número de diapositiva 1

