
Page 1 of 6

EAGLE: AN EXTENSIBLE, END-TO-END SIMULATION AND EVALUATION

FRAMEWORK FOR PLANETARY EDLS

Ender St. John-Olcayto
(1)
, Guy Johns

(2)
, Alastair Pidgeon

(3)
, Christian Philippe

(4)

(1) SciSys U.K. Ltd, Methuen Park, Chippenham, Wiltshire SN14 0GB, U.K., Email: Ender.Olcayto@scisys.co.uk

(2) SciSys U.K. Ltd., 23 Clothier Road, Bristol, Avon BS4 5SS, U.K., Email: Guy.Johns@scisys.co.uk
 (3) SciSys U.K. Ltd, Methuen Park, Chippenham, Wiltshire SN14 0GB, U.K., Email: Alastair.Pidgeon@scisys.co.uk
(4) ESTEC, Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands, Email: christian.philippe@esa.int

ABSTRACT

This paper introduces the EAGLE model-based design

simulator framework for designing and testing

guidance navigation algorithms for planetary probe

entry / descent, landing and terminal-phase algorithms.

EAGLE has been developed to aid systems engineers

involved in the design, maturation, and evaluation of

these algorithms throughout the design phases of the

space system engineering life-cycle.

This paper will describe the design goals and the

principal elements of the software. The work-flow for

maturing the technology readiness level of the

algorithms will also be discussed.

1. INTRODUCTION

Entry, descent, and landing (E/DL1) is one of the most

critical parts of a surface planetary mission following

the launch sequence. It is also a mission phase that is

most reliant on spacecraft autonomy with little scope

for human intervention. For this reason, E/DL is

subject to high levels of simulation-based evaluation

during each of the design phases of the space system

engineering lifecycle (SSEL) [1].

Fig. 1 shows the SSEL for a given space system from

mission analysis need (phase 0) to system disposal

(phase F.) Design of a given space system takes place

in phases A, B and C. The mission needs and

identification of possible system concepts takes place

in phase 0.

Each design phase uses a different level of simulation

fidelity, with the fidelity increasing as the mission

concept and associated design matures.

Simulation is used in the subsequent phases but is not

used to increase the maturity level of the space system

under consideration. For example, in phase E,

operational simulators are used to perform operator

training and in-orbit validation if the system under

consideration is a space vehicle. These simulators are

space systems in their own right and follow their own

SSEL.

1 “Entry” refers to atmospheric entry. Atmospheric

entry is not a part of the mission for vehicles whose

target has no atmosphere. In these cases, the vehicle

undergoes descent and landing (DL) only.

The Entry and Guided Landing Environment (EAGLE)

is an environment based on MATLAB® / Simulink®

and other commercial-of-the-shelf (COTS) and open-

source software (OSS) for systems engineers to create

mission-specific design and verification / validation

simulators for E/DL applications in a repeatable

manner.

Fig. 1: The space system engineering lifecycle.

2. DESIGN GOALS AND AUDIENCE

One of the problems of mission analyses and systems

studies / design is the repeated development of

software tools that serve the same function across

programmes, missions and projects. Many of these

software tools are simulators and simulation

frameworks. Unfortunately, these tools are often

incompatible across these programmes, missions and

projects.

EAGLE was initiated to prevent the replication of

simulation functionality for E/DL analyses and design

Page 2 of 6

phases (in its present form, it is capable of supporting

parts of phase D and E.)

The initial design goal of EAGLE is to provide a

platform for the design and evaluation of GNC

algorithms for Mars EDL (such as the ESA Mars EDL

Demonstrator) and Lunar DL (such as the ESA Lunar

Lander) vehicles. However, it can be applied to other

applications such as Earth, Venus and Titan EDL.

Additionally, it can be applied to non-ED/L spacecraft

applications such as aerobraking and asteroid

rendezvous / landing.

Although primarily aimed at the SSEL design phases

for GNC, EAGLE can also be used to create simulators

(and simulation components) for evaluating candidate

mission concepts during phase 0 and phase D (where

specialized simulators are required for hardware /

software integration and test.)

EAGLE provides a framework for creating coupled

multi-body vehicle and vehicle / environmental

simulators using a model-based design (MBD)

philosophy. This approach requires mathematical

models (either first-principles models, data-centric

models such as look-up tables and polynomial

approximations, or combinations of the two) to be

integrated so that a single mathematical model is

obtained. The MBD philosophy then requires this

model to be simulated with the results being used to

drive mission and design decisions.

The target users include:

1. Mission Systems Engineers:

Mission Systems Engineers perform feasibility

studies and design the mission concepts and

architectures. Additionally, mission systems

engineers select the mission system candidate(s)

that is (are) most likely to satisfy the science, cost,

and schedule constraints imposed by the

programme.

2. Systems Engineers:

Systems engineers perform integrated system

design and system trade-offs to obtain solutions

that are optimal with respect to the mission goals

and constraints. They flow down mission and

system requirements to subject matter experts

(SMEs) such as GNC engineers.

3. GNC Engineers:

GNC Engineers develop guidance, navigation and

control (GNC) algorithms, hazard detection and

avoidance (HAD) algorithms. Additionally, GNC

engineers specify / select GNC related hardware

(such as sensing and actuation subsystems) and

place requirements on the on-board computing

resources.

4. Other Subject Matter Experts:

SMEs such as specialists in decelerator

technologies, propulsion systems, power systems

and other hardware engineers can provide

subsystem and component models and integrate

them into EAGLE.

3. EAGLE CAPABILITIES

The EAGLE framework is used to create simulators of

appropriate fidelity for the design, testing and

maturation of GNC and related algorithms. It supports

the V-model [2] of system engineering as shown in

Fig. 2.

Fig. 2: EAGLE supports the V-model of system

engineering.

The V-model is supported through automated testing at

every stage of the system design process (test suites are

executed corresponding to the different design stages

on left hand side of the diagram.) Additionally, the

flight software verification and validation activities are

supported by the following (sequential) simulation

modes:

1. Model-in-the-loop (MIL): Native Simulink blocks

are used to represent the environment, the vehicle

and the GNC algorithms / other flight software.

2. Software-in-the-loop (SIL): The blocks

representing the flight software are converted to

code for the host platform (upon which EAGLE

executes) using TargetLink®. This code is

compiled and linked with Simulink and replaces

the corresponding native Simulink blocks.

3. Processor-in-the-loop (PIL): The blocks

representing the flight software are converted to

code for the target platform (a flight-representative

processor.) The vehicle and environment models

are converted to code using TargetLink and

compiled on a dSpace® real-time, hardware

system. A network then connects the processor

and the real-time vehicle / environment model to

enable feedback control.

4. Hardware-in-the-loop (HIL): This is the same as

the above but with flight hardware (such as

sensors) replacing elements of the vehicle model.

Page 3 of 6

An important part of flight software is its ability to

respond to the effects of various in-flight contingencies

(such as the occurrence of a failure mode or an

unexpected environmental condition.) For this reason,

EAGLE provides the user with the ability to trigger

faults in the vehicle model’s subsystems and to change

parameters that represent environmental variables.

These faults and parameter changes can also be

triggered from MATLAB scripts permitting automated

testing of robustness and fault detection and recovery

(FDIR) algorithms.

EAGLE is also able to support phase D and phase E of

a spacecraft’s lifecycle by permitting the generation of

ESA’s simulation portability (SMP) standard

compliant code (for SMP1 and SMP2) through the

Mosaic [3] target for Real-Time Workshop®. The

automatically generated code can be compiled and

linked into other frameworks such as real-time

operational simulators for training, in-orbit validation,

and vehicle anomaly-handling activities.

4. ARCHITECTURE AND DESIGN

EAGLE consists of the following elements (see Fig. 3):

1. The simulation kernel,

2. Analysis tools,

3. Design tools,

4. Graphical User Interface.

Fig. 3: The primary components of EAGLE and the

data flows between them.

The simulation kernel supports continuous-time and

discrete-time models for vehicle / environmental and

algorithm state propagation respectively. Additionally,

EAGLE also supports both variable-step and fixed-step

propagation of the continuous-time states; the former

used for desktop simulation and the latter used for PIL

and HIL simulation.

Simulation kernel: The simulation kernel is

implemented in MATLAB and Simulink. It is

comprised of Simulink blocks and supporting

MATLAB files. The blocks are integrated into the

Simulink user-interface as a “blockset” (Fig. 4.) This

enables rapid building of models by users who are

already well-versed in this popular simulation package.

Fig. 4: The EAGLE blockset.

The blockset is arranged into six sub-libraries:

1. Dynamics: 3 / 6 DOF (Euler angle and quaternion

computation), ablating rigid body, mass properties

evolution, tank dynamics, fuel slosh, flexible

structures, parachutes and airbags.

2. Environment: Atmospheric (simple model, Earth

models: NRL-MSISE00, GRAM2007, Mars

models: EMCD, MarsGRAM2005), ground

interactions and gravity (Nth order harmonics.)

3. Mathematics: Coordinate transformations, vector

and quaternion mathematics, aerodynamic angles.

4. Actuators: On / off thrusters (suitable for pulse-

width modulation control and timed control) and

continuously variable thrusters.

5. Logic / Control: Flight regime modes (ballistic

entry, parachute deceleration, powered descent,

landing) and GNC / HDA models.

6. Sensors: Landing LIDAR (provided through

PANGU2 [4]), accelerometers / gyros, camera,

pressure measurement, Doppler radar (provided

through PANGU), star tracker.

2 PANGU: Planet and Asteroid Natural Scene

Generation Utility software created by the Space

Systems Research Group, the University of Dundee.

Page 4 of 6

Comprehensive documentation for each block is

provided through the Simulink on-line help facility.

New blocks can be integrated into the appropriate sub-

library provided that they adhere to the EAGLE block

interface standard. Blocks undergo a strict

qualification procedure by which simulated data is

compared with actual data (for example, from the

manufacturer of the hardware being modelled or from

actual space missions.)

Analysis tools: Post-simulation analysis of results can

be made through a number of different tools. These

include statistical (such as landing dispersion as shown

in Fig. 5) and dynamic analyses (such as dynamic

pressure as shown in Fig. 6.)

Fig. 5: Landing dispersion in Cartesian coordinates.

Fig. 6: Simulated dynamic pressure during entry.

Design tools: Since the EAGLE simulation kernel is

implemented in MATLAB and Simulink, many tools

can be employed for design. The Control System

Toolbox™ (upon which EAGLE relies to represent

linear systems) can be used to design control loops.

The data objects within EAGLE can also be used with

the Robust Control Toolbox™.

The current revision of EAGLE interfaces with the

Worst-Case Analysis Tool (WCAT) from the

University of Leicester. This tool can reduce the

computational effort in determining the robustness to

parameter variations. Robustness is normally

determined through computationally intensive Monte

Carlo methods.

Graphical User interface: Following the creation of a

simulator using the Simulink interface, all further

interaction with the simulator is achieved through the

EAGLE GUI (see Fig. 7), which is a Java-based

application built using the Eclipse software

development environment. The user has full control

over the parameters used in the simulator. The benefits

of separating the GUI from the simulator are:

1. Non-users of MATLAB and Simulink can execute

simulations and to analyse their results,

2. It ensures that the simulator structure is not

changed accidentally,

3. The functions of the GUI and the simulator /

simulator elements are separated which permits

each to be maintained separately.

Fig. 7: The EAGLE graphical user interface.

5. EAGLE WORK-FLOW

EAGLE provides an iterative simulation workflow (see

Fig. 8) that starts with the simulation needs of phase 0

and phases A studies. These studies provide data

products for the simulation needs of subsequent system

engineering phases; culminating in the validation of

flight software.

To support the above workflow, EAGLE provides four

macro-levels of simulation fidelity that are mapped to

the following simulation classes:

1. System concepts simulator (SCS),

Page 5 of 6

2. Mission performance simulator (MPS),

3. Non-real-time functional engineering simulator

(NRT-FES),

4. Avionics test bed (ATB).

EAGLE provides an iterative simulation workflow (see

Fig. 8) that starts with the simulation needs of phase 0

and phase A studies and provides data products for the

simulation needs of subsequent SSEL phases,

culminating in validated flight software.

To support the above workflow, EAGLE provides four

macro-levels of simulation fidelity that are mapped to

the following simulation classes:

1. System concepts simulator (SCS),

2. Mission performance simulator (MPS),

3. Non-real-time functional engineering simulator

(NRT-FES),

4. Avionics test bed (ATB).

Fig. 8: The EAGLE simulation development workflow.

These simulation fidelity levels are described below:

SCS: The SCS is built in a desktop computing

environment. The purpose of the SCS is to determine

the feasibility of the selected mission from the

vehicle’s final trajectory correction manoeuvre to the

lander touch-down point. A key feature of the SCS is

that it operates much more quickly than wall-clock

time. This is achieved using relatively simple

spacecraft, environment, and algorithmic models (for

example, point mass / single body representations of

the spacecraft and a simple atmospheric model.) This

simulation speed permits mission concepts to be

evaluated, accepted / rejected, or modified quickly.

MPS: Like the SCS, the MPS is built on the desktop.

The MCS is a refinement of the SCS and is used to

elaborate the spacecraft and environmental models.

Aspects of the MCS include full 6 DOF modelling of

all the spacecraft bodies, a realistic atmospheric model,

and fault injection capability. After the necessary

refinements and elaborations have been performed, the

MCS provides a platform for the definition of a GNC

architecture. The MCS permits parameter trade-offs

and robustness tests (through Monte Carlo methods) of

the GNC concept to be performed.

NRT-FES: The NRT-FES represents another

increment in simulation fidelity and is derived from the

MCS. It is used to focus on specific mission phases

and events (such as parachute / airbag / landing leg

deployments) and also to confirm GNC robustness in a

full fidelity simulation. The NRT-FES may be

bypassed, with the MPS being converted to the ATB

directly.

ATB: The ATB is used to evaluate the GNC

algorithms in a real-time environment that represents

the spacecraft computing resources as closely as

possible (LEON 3 processors.) The ATB is especially

useful in determining if the GNC algorithms satisfy

timing, memory, and fault recovery constraints. The

fidelity level of the spacecraft (dynamics, sensors,

actuators, etc.) and the environment is equivalent to

that of the MPS. The spacecraft and environment

models are converted to real-time code and compiled

and linked to run on the dSpace platform. This

processor-in-the-loop architecture as shown in Fig. 9

provides end-to-end simulation capability.

Fig. 9: The architecture of an EAGLE ATB simulator.

6. CONCLUSIONS AND FURTHER WORK

The EAGLE simulation framework has been presented.

The need for such a framework and the intended

audience has been described. The primary capabilities

of EAGLE and its architecture were also presented.

Finally, the workflow for maturing the GNC

algorithms was presented.

EAGLE is being used (and improved) on several other

projects, funded both internal to and external from

SciSys. Recently completed work permits the

modelling of the power generation (battery charging,

solar-electric generation with eclipse effects) and usage

of various subsystems. This permits the system

engineer with another tool for requirements generation

and compliance.

Page 6 of 6

Work is also under way to extend the number of

gravity models available in the EAGLE blockset.

Recently, a panel method for high-fidelity

representation of gravity fields of irregularly shaped

bodies was developed at SciSys and this is being

integrated with EAGLE currently. This method is

useful for asteroid rendezvous and also for modelling

local gravitational effects in the vicinity of vehicle

landing sites.

7. ACKNOWLEDGEMENTS

SciSys is grateful for the support of ESTEC contract

21286/07/NL/EK under which EAGLE is being

developed for ESA. The authors are also grateful for

the help provided by Michelangelo Russo and Benoit

Pigneur of SciSys during the preparation of this paper.

8. REFERENCES

1. Space Engineering / System Engineering General

Requirements, ECSS-E-ST-10 C. European

Cooperation for Space Standardization, 6 March 2007

2. Forsberg, K. and Mooz, H., System Engineering

for Faster, Cheaper, Better. Internal report of the

Center for Systems Management, Inc. Available at

http://bit.ly/dmEcoR.

3. Moelands, J.M., Lammen, W.F., Jansen, M.,

Arcioni, M., Wijnands, Q., Automatic Model Transfer

from MATLAB / Simulink to Simulation Model

Portability 2. The Netherlands National Aerospace

Laboratory internal report NLR-TP-2006-674.

Available at http://bit.ly/cVnMJc.

4. Parkes, S., Dunstan, M., Mendham, P.,

Mancuso, S., Planet Surface Simulation Testing

Vision-based Autonomous Planetary Landers.

