
Page 1 of 6 

EAGLE: AN EXTENSIBLE, END-TO-END SIMULATION AND EVALUATION 

FRAMEWORK FOR PLANETARY EDLS 

 

Ender St. John-Olcayto
(1)
, Guy Johns

(2)
, Alastair Pidgeon

(3)
, Christian Philippe

(4)
 

 
(1) SciSys U.K. Ltd, Methuen Park, Chippenham, Wiltshire SN14 0GB, U.K., Email: Ender.Olcayto@scisys.co.uk 

(2) SciSys U.K. Ltd., 23 Clothier Road, Bristol, Avon BS4 5SS, U.K., Email: Guy.Johns@scisys.co.uk 
 (3) SciSys U.K. Ltd, Methuen Park, Chippenham, Wiltshire SN14 0GB, U.K., Email: Alastair.Pidgeon@scisys.co.uk 
(4) ESTEC, Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands, Email: christian.philippe@esa.int 

ABSTRACT 

This paper introduces the EAGLE model-based design 

simulator framework for designing and testing 

guidance navigation algorithms for planetary probe 

entry / descent, landing and terminal-phase algorithms.  

EAGLE has been developed to aid systems engineers 

involved in the design, maturation, and evaluation of 

these algorithms throughout the design phases of the 

space system engineering life-cycle. 

This paper will describe the design goals and the 

principal elements of the software.  The work-flow for 

maturing the technology readiness level of the 

algorithms will also be discussed. 

1. INTRODUCTION 

Entry, descent, and landing (E/DL1) is one of the most 

critical parts of a surface planetary mission following 

the launch sequence.  It is also a mission phase that is 

most reliant on spacecraft autonomy with little scope 

for human intervention.  For this reason, E/DL is 

subject to high levels of simulation-based evaluation 

during each of the design phases of the space system 

engineering lifecycle (SSEL) [1]. 

Fig. 1 shows the SSEL for a given space system from 

mission analysis need (phase 0) to system disposal 

(phase F.)  Design of a given space system takes place 

in phases A, B and C.  The mission needs and 

identification of possible system concepts takes place 

in phase 0. 

Each design phase uses a different level of simulation 

fidelity, with the fidelity increasing as the mission 

concept and associated design matures. 

Simulation is used in the subsequent phases but is not 

used to increase the maturity level of the space system 

under consideration.  For example, in phase E, 

operational simulators are used to perform operator 

training and in-orbit validation if the system under 

consideration is a space vehicle.  These simulators are 

space systems in their own right and follow their own 

SSEL. 

                                            
1 “Entry” refers to atmospheric entry.  Atmospheric 

entry is not a part of the mission for vehicles whose 

target has no atmosphere.  In these cases, the vehicle 

undergoes descent and landing (DL) only. 

The Entry and Guided Landing Environment (EAGLE) 

is an environment based on MATLAB® / Simulink® 

and other commercial-of-the-shelf (COTS) and open-

source software (OSS) for systems engineers to create 

mission-specific design and verification / validation 

simulators for E/DL applications in a repeatable 

manner. 

Fig. 1: The space system engineering lifecycle. 

2. DESIGN GOALS AND AUDIENCE 

One of the problems of mission analyses and systems 

studies / design is the repeated development of 

software tools that serve the same function across 

programmes, missions and projects.  Many of these 

software tools are simulators and simulation 

frameworks.  Unfortunately, these tools are often 

incompatible across these programmes, missions and 

projects. 

EAGLE was initiated to prevent the replication of 

simulation functionality for E/DL analyses and design 
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phases (in its present form, it is capable of supporting 

parts of phase D and E.) 

The initial design goal of EAGLE is to provide a 

platform for the design and evaluation of GNC 

algorithms for Mars EDL (such as the ESA Mars EDL 

Demonstrator) and Lunar DL (such as the ESA Lunar 

Lander)  vehicles.  However, it can be applied to other 

applications such as Earth, Venus and Titan EDL.  

Additionally, it can be applied to non-ED/L spacecraft 

applications such as aerobraking and asteroid 

rendezvous / landing. 

Although primarily aimed at the SSEL design phases 

for GNC, EAGLE can also be used to create simulators 

(and simulation components) for evaluating candidate 

mission concepts during phase 0 and phase D (where 

specialized simulators are required for hardware / 

software integration and test.) 

EAGLE provides a framework for creating coupled 

multi-body vehicle and vehicle / environmental 

simulators using a model-based design (MBD) 

philosophy.  This approach requires mathematical 

models (either first-principles models, data-centric 

models such as look-up tables and polynomial 

approximations, or combinations of the two) to be 

integrated so that a single mathematical model is 

obtained.  The MBD philosophy then requires this 

model to be simulated with the results being used to 

drive mission and design decisions. 

The target users include: 

1. Mission Systems Engineers: 

Mission Systems Engineers perform feasibility 

studies and design the mission concepts and 

architectures.  Additionally, mission systems 

engineers select the mission system candidate(s) 

that is (are) most likely to satisfy the science, cost, 

and schedule constraints imposed by the 

programme. 

2. Systems Engineers: 

Systems engineers perform integrated system 

design and system trade-offs to obtain solutions 

that are optimal with respect to the mission goals 

and constraints.  They flow down mission and 

system requirements to subject matter experts 

(SMEs) such as GNC engineers. 

3. GNC Engineers: 

GNC Engineers develop guidance, navigation and 

control (GNC) algorithms, hazard detection and 

avoidance (HAD) algorithms.  Additionally, GNC 

engineers specify / select GNC related hardware 

(such as sensing and actuation subsystems) and 

place requirements on the on-board computing 

resources. 

4. Other Subject Matter Experts: 

SMEs such as specialists in decelerator 

technologies, propulsion systems, power systems 

and other hardware engineers can provide 

subsystem and component models and integrate 

them into EAGLE. 

3. EAGLE CAPABILITIES 

The EAGLE framework is used to create simulators of 

appropriate fidelity for the design, testing and 

maturation of GNC and related algorithms.  It supports 

the V-model [2] of system engineering as shown in 

Fig. 2. 

 

Fig. 2: EAGLE supports the V-model of system 

engineering. 

The V-model is supported through automated testing at 

every stage of the system design process (test suites are 

executed corresponding to the different design stages 

on left hand side of the diagram.)  Additionally, the 

flight software verification and validation activities are 

supported by the following (sequential) simulation 

modes: 

1. Model-in-the-loop (MIL): Native Simulink blocks 

are used to represent the environment, the vehicle 

and the GNC algorithms / other flight software. 

2. Software-in-the-loop (SIL): The blocks 

representing the flight software are converted to 

code for the host platform (upon which EAGLE 

executes) using TargetLink®.  This code is 

compiled and linked with Simulink and replaces 

the corresponding native Simulink blocks. 

3. Processor-in-the-loop (PIL): The blocks 

representing the flight software are converted to 

code for the target platform (a flight-representative 

processor.)  The vehicle and environment models 

are converted to code using TargetLink and 

compiled on a dSpace® real-time, hardware 

system.  A network then connects the processor 

and the real-time vehicle / environment model to 

enable feedback control. 

4. Hardware-in-the-loop (HIL): This is the same as 

the above but with flight hardware (such as 

sensors) replacing elements of the vehicle model. 
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An important part of flight software is its ability to 

respond to the effects of various in-flight contingencies 

(such as the occurrence of a failure mode or an 

unexpected environmental condition.)  For this reason, 

EAGLE provides the user with the ability to trigger 

faults in the vehicle model’s subsystems and to change 

parameters that represent environmental variables.  

These faults and parameter changes can also be 

triggered from MATLAB scripts permitting automated 

testing of robustness and fault detection and recovery 

(FDIR) algorithms. 

EAGLE is also able to support phase D and phase E of 

a spacecraft’s lifecycle by permitting the generation of 

ESA’s simulation portability (SMP) standard 

compliant code (for SMP1 and SMP2) through the 

Mosaic [3] target for Real-Time Workshop®.  The 

automatically generated code can be compiled and 

linked into other frameworks such as real-time 

operational simulators for training, in-orbit validation, 

and vehicle anomaly-handling activities. 

4. ARCHITECTURE AND DESIGN 

EAGLE consists of the following elements (see Fig. 3): 

1. The simulation kernel, 

2. Analysis tools, 

3. Design tools, 

4. Graphical User Interface. 

 

Fig. 3: The primary components of EAGLE and the 

data flows between them. 

The simulation kernel supports continuous-time and 

discrete-time models for vehicle / environmental and 

algorithm state propagation respectively.  Additionally, 

EAGLE also supports both variable-step and fixed-step 

propagation of the continuous-time states; the former 

used for desktop simulation and the latter used for PIL 

and HIL simulation. 

Simulation kernel: The simulation kernel is 

implemented in MATLAB and Simulink.  It is 

comprised of Simulink blocks and supporting 

MATLAB files.  The blocks are integrated into the 

Simulink user-interface as a “blockset” (Fig. 4.)  This 

enables rapid building of models by users who are 

already well-versed in this popular simulation package. 

 

Fig. 4: The EAGLE blockset. 

The blockset is arranged into six sub-libraries: 

1. Dynamics: 3 / 6 DOF (Euler angle and quaternion 

computation), ablating rigid body, mass properties 

evolution, tank dynamics, fuel slosh, flexible 

structures, parachutes and airbags. 

2. Environment: Atmospheric (simple model, Earth 

models: NRL-MSISE00, GRAM2007, Mars 

models: EMCD, MarsGRAM2005), ground 

interactions and gravity (Nth order harmonics.) 

3. Mathematics: Coordinate transformations, vector 

and quaternion mathematics, aerodynamic angles. 

4. Actuators: On / off thrusters (suitable for pulse-

width modulation control and timed control) and 

continuously variable thrusters. 

5. Logic / Control: Flight regime modes (ballistic 

entry, parachute deceleration, powered descent, 

landing) and GNC / HDA models. 

6. Sensors: Landing LIDAR (provided through 

PANGU2 [4]), accelerometers / gyros, camera, 

pressure measurement, Doppler radar (provided 

through PANGU), star tracker. 

                                            

2 PANGU: Planet and Asteroid Natural Scene 

Generation Utility software created by the Space 

Systems Research Group, the University of Dundee. 
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Comprehensive documentation for each block is 

provided through the Simulink on-line help facility.  

New blocks can be integrated into the appropriate sub-

library provided that they adhere to the EAGLE block 

interface standard.  Blocks undergo a strict 

qualification procedure by which simulated data is 

compared with actual data (for example, from the 

manufacturer of the hardware being modelled or from 

actual space missions.) 

Analysis tools: Post-simulation analysis of results can 

be made through a number of different tools.  These 

include statistical (such as landing dispersion as shown 

in Fig. 5) and dynamic analyses (such as dynamic 

pressure as shown in Fig. 6.) 

Fig. 5: Landing dispersion in Cartesian coordinates. 

 

Fig. 6: Simulated dynamic pressure during entry. 

Design tools: Since the EAGLE simulation kernel is 

implemented in MATLAB and Simulink, many tools 

can be employed for design.  The Control System 

Toolbox™ (upon which EAGLE relies to represent 

linear systems) can be used to design control loops.  

The data objects within EAGLE can also be used with 

the Robust Control Toolbox™. 

The current revision of EAGLE interfaces with the 

Worst-Case Analysis Tool (WCAT) from the 

University of Leicester.  This tool can reduce the 

computational effort in determining the robustness to 

parameter variations.  Robustness is normally 

determined through computationally intensive Monte 

Carlo methods. 

Graphical User interface: Following the creation of a 

simulator using the Simulink interface, all further 

interaction with the simulator is achieved through the 

EAGLE GUI (see Fig. 7), which is a Java-based 

application built using the Eclipse software 

development environment.  The user has full control 

over the parameters used in the simulator.  The benefits 

of separating the GUI from the simulator are: 

1. Non-users of MATLAB and Simulink can execute 

simulations and to analyse their results, 

2. It ensures that the simulator structure is not 

changed accidentally, 

3. The functions of the GUI and the simulator / 

simulator elements are separated which permits 

each to be maintained separately. 

 

Fig. 7: The EAGLE graphical user interface. 

5. EAGLE WORK-FLOW 

EAGLE provides an iterative simulation workflow (see 

Fig. 8) that starts with the simulation needs of phase 0 

and phases A studies.  These studies provide data 

products for the simulation needs of subsequent system 

engineering phases; culminating in the validation of 

flight software. 

To support the above workflow, EAGLE provides four 

macro-levels of simulation fidelity that are mapped to 

the following simulation classes: 

1. System concepts simulator (SCS), 
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2. Mission performance simulator (MPS), 

3. Non-real-time functional engineering simulator 

(NRT-FES), 

4. Avionics test bed (ATB). 

EAGLE provides an iterative simulation workflow (see 

Fig. 8) that starts with the simulation needs of phase 0 

and phase A studies and provides data products for the 

simulation needs of subsequent SSEL phases, 

culminating in validated flight software. 

To support the above workflow, EAGLE provides four 

macro-levels of simulation fidelity that are mapped to 

the following simulation classes: 

1. System concepts simulator (SCS), 

2. Mission performance simulator (MPS), 

3. Non-real-time functional engineering simulator 

(NRT-FES), 

4. Avionics test bed (ATB). 

 

Fig. 8: The EAGLE simulation development workflow. 

These simulation fidelity levels are described below: 

SCS: The SCS is built in a desktop computing 

environment.  The purpose of the SCS is to determine 

the feasibility of the selected mission from the 

vehicle’s final trajectory correction manoeuvre to the 

lander touch-down point.  A key feature of the SCS is 

that it operates much more quickly than wall-clock 

time.  This is achieved using relatively simple 

spacecraft, environment, and algorithmic models (for 

example, point mass / single body representations of 

the spacecraft and a simple atmospheric model.)  This 

simulation speed permits mission concepts to be 

evaluated, accepted / rejected, or modified quickly. 

MPS: Like the SCS, the MPS is built on the desktop.  

The MCS is a refinement of the SCS and is used to 

elaborate the spacecraft and environmental models.  

Aspects of the MCS include full 6 DOF modelling of 

all the spacecraft bodies, a realistic atmospheric model, 

and fault injection capability.  After the necessary 

refinements and elaborations have been performed, the 

MCS provides a platform for the definition of a GNC 

architecture.  The MCS permits parameter trade-offs 

and robustness tests (through Monte Carlo methods) of 

the GNC concept to be performed. 

NRT-FES: The NRT-FES represents another 

increment in simulation fidelity and is derived from the 

MCS.  It is used to focus on specific mission phases 

and events (such as parachute / airbag / landing leg 

deployments) and also to confirm GNC robustness in a 

full fidelity simulation.  The NRT-FES may be 

bypassed, with the MPS being converted to the ATB 

directly. 

ATB: The ATB is used to evaluate the GNC 

algorithms in a real-time environment that represents 

the spacecraft computing resources as closely as 

possible (LEON 3 processors.)  The ATB is especially 

useful in determining if the GNC algorithms satisfy 

timing, memory, and fault recovery constraints.  The 

fidelity level of the spacecraft (dynamics, sensors, 

actuators, etc.) and the environment is equivalent to 

that of the MPS.  The spacecraft and environment 

models are converted to real-time code and compiled 

and linked to run on the dSpace platform.  This 

processor-in-the-loop architecture as shown in Fig. 9 

provides end-to-end simulation capability. 

 

Fig. 9: The architecture of an EAGLE ATB simulator. 

6. CONCLUSIONS AND FURTHER WORK 

The EAGLE simulation framework has been presented.  

The need for such a framework and the intended 

audience has been described.  The primary capabilities 

of EAGLE and its architecture were also presented.  

Finally, the workflow for maturing the GNC 

algorithms was presented. 

EAGLE is being used (and improved) on several other 

projects, funded both internal to and external from 

SciSys. Recently completed work permits the 

modelling of the power generation (battery charging, 

solar-electric generation with eclipse effects) and usage 

of various subsystems.  This permits the system 

engineer with another tool for requirements generation 

and compliance. 
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Work is also under way to extend the number of 

gravity models available in the EAGLE blockset.  

Recently, a panel method for high-fidelity 

representation of gravity fields of irregularly shaped 

bodies was developed at SciSys and this is being 

integrated with EAGLE currently.  This method is 

useful for asteroid rendezvous and also for modelling 

local gravitational effects in the vicinity of vehicle 

landing sites. 
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