

NEW CONTROL SYSTEM FOR SPACE INSTRUMENTS. APPLICATION FOR MEDUSA
EXPERIMENT

B. Aparicio del Moral(1), J.M. Jerónimo Zafra(1), J.F. Rodríguez Gómez(1), R. Sanz Mesa(1), R. Morales Muñoz(1),

A. Rodríguez Trinidad(1), J.J. López Moreno(1) and the international Medusa team

(1)IAA (CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain, Email:{bea, jeronimo, julio, sanz, rmorales, art,
lopez}@iaa.es

ABSTRACT

Control is a key question when we talk about space
instruments. Usually, the instrument has to perform a
sequence of actions and changes on this sequence are
very expensive in terms of communication and time.
We are developing a new technique to control space
instruments, based on programmable finite state
machines. This allows controlling systems and at the
same time it gives flexibility to change the sequence of
actions to execute. However, hardware implementation
of the basic control makes the instrument more reliable
than the software one. The programmable finite state
machine is stored in RAM and it can be changed from
Earth at every moment. The condition to execute one
or other action can be selected dynamically by the user.
One of the advantages of this technique is that the
control can be implemented using non reprogrammable
devices, because the sequence is stored in an external
memory. The main disadvantage of this technique for
using it in space is that it requires a large amount of
memory. This means large size chips, which makes the
hardware harder to route and it increases the size and
weight. However with the new method presented here,
the necessary memory is dramatically reduced. The
actions to be performed by the system are grouped into
“states”. The external RAM stores the condition to
change the state, and the new state.
We are testing our control system in MEDUSA
instrument, to Exomars mission. A prototype board has
been designed and this will allow us to finish the test to
evaluate the goodness of our system.

1. INTRODUCTION

Control and reliability of space instruments are
determinant factors for the success of the mission.
Usually, the instrument has to perform a sequence of
actions. Changes on this sequence use to be necessary
but expensive in terms of communication and time.
Alterations in the instrument operations are a typical
activity after the launch. The main reasons to apply
them are related with the unexpected hardware (HW)
malfunction, HW efficiency loss, software (SW) errors,
future improvements or changes in the mission
objectives.

Usually, these types of changes are done by software
(SW) using partial modifications (patches) or full
modifications (new software version). Patches are not
easy to create, because they must be run keeping the
current SW state. However they optimize the
communications link that is critical in space missions.
A new SW version is easier to produce but multiply the
resources needed in the communications link and the
complexity of the validation.
In this paper we present a new method that allows
changes in the sequence of actions by drastically
reducing the communication link use. The method also
executes the sequence using a programmable finite
state machine instead a microprocessor. In that way we
can reduce the need of sending SW patches, allowing
also the control and reliability needed in a space
mission by using safe design techniques for FSM
(Finite State Machine) [1], [2], [3] .

This paper is organized as follows: Section 2 describes
the problem and explains how it is classically solved.
Section 3 presents the new method developed by the
authors. Section 4 is an application of this method to a
real instrument, MEDUSA. Finally, in section 5 we
present the conclusions and future work.

2. PROBLEM DESCRIPTION AND STATE OF

THE ART ANALYSIS

As we have described before, changes in an instrument
sequence are necessary in most of space missions. An
example of sequence could be: power a laser on, start
taking measures, and when some condition occurs,
power laser off. FSMs have been widely used to solve
this kind of control sequences.
Some authors [4] use small calculus units to perform a
sequence of actions. They say that these units execute a
finite state machine therefore the whole system is a
programmable state machine, as it is possible to
program the connections between the calculus units.
In this paper we are going to use a different concept of
programmable state machine. Experiences in other
space missions [5], [6], [7] have demonstrated that a
hardware based system is more reliable than a SW one
managing HW systems at low level. This is the reason
because we try to avoid software as much as possible.

One of the goals of our design method is that no
processor will be needed; the FSM is implemented in a
hardware configurable device (i.e. a Field
Programmable Gate Array FPGA).
We can consider each step of the sequence to execute
as a FSM state. The basic FSM has fixed transitions
between states, which cannot be modified. Therefore it
is desirable to use a FSM that can modify the
transitions between states, this is, it can change the
sequence of actions. That is a Programmable State
Machine (PSM) [8], [9]. As we are developing this to
be used in a space mission, it is necessary to do it in a
way that guarantees maximum reliability against
possible failures [1], [2], [3].
This idea has been applied to MEDUSA instrument,
but it is possible to use it in other systems with a
similar function scheme.

3. PSM ARCHITECTURE

Programmable State Machine is a special kind of Finite
State Machine. Therefore we are going to explain first
what a Finite State Machine is. Then the PSM will be
introduced.
A Finite State Machine is a model of behavior of a
system with inputs and outputs, where the outputs
depend not only on the current inputs, but previous
ones. The state machines are defined as a set of states
that acts as intermediary in this input-output
relationship, making the history of the inputs signals
determine for a moment a state for the machine. That
way the output depends only on the current inputs and
the state.
Formally, a finite state machine is a five-tuple [10]

(Q, ∑, q0, δ, F)

where

 Q: Finite set of symbols denoting states
 Σ: set of symbols denoting possible inputs
 q0 ∈ Q: initial state
 F: Set of symbols denoting possible outputs
 δ: transition function mapping QxΣ to QxF

In one reaction, a FSM maps a current state p ∈ Q and
an input symbol a ∈ Σ to a next state q ∈ Q and an
output symbol b ∈ F, where δ(p,a)=(q, b)The basic
FSM, flat and sequential has a weakness. Most
practical systems have a very large number of states of
transitions. Representation and analysis become
difficult. A large number of states in a FSM can
complicate the FSM encoding [11]. We can solve this
problem by using hierarchy [12]. In a hierarchical FSM
(HFSM), a state can be turned in another FSM. We will
call the inside FSM the slave, and the outside the
master [13]. Hierarchy does not reduce the number of

states Q, neither the transitions δ but can significantly
make the FSM easier to understand and encode. This is
also applicable to the hardware implementation, which
will be simpler.

Fig. 1. Hierarchical FSM

In Fig.1 there is a hierarchical state machine. The
master state machine has only two states, A and B. The
slave machine has four states: (p, q, r, s). In a flat FSM,
there would be six states and six transitions, that can be
coded by using between 3 and 6 bits. The number of
bits used to encode the states depends on the desired
type of encoding: using gray or binary encoding we
would use fewer bits than using one hot encoding [14].
Codification is easier using hierarchy: to encode the
master machine, we need from one to two bits for the
state encoding, and we have only two transitions. The
states in the slave machine can be encoded by using
between 2 and 4 bits, and there are only four
transitions.
This way of working can simplify the representation of
the FSM. In fact, the encoding of two simples FSMs
with 2 and 4 states respectively is cheaper in terms of
hardware cost [15], representation, and it is easier to
understand than the encoding of only one FSM with 5
states and 5 transitions.
The aim of the paper is to create a programmable
hierarchical state machine, in which the transitions to
change from one state to another can be altered for
every machine of the hierarchy.
The following sections will discuss the differences
between states and functional blocks, the deterministic
FSM used and the method for storing states and
transitions.

3.1. States and functional blocks
The concept of “State” in a PSM is different from the
concept of functional block in a system. In the HFSM
the top level hierarchy indicates which blocks are
working at the same time. As an example, let’s

consider a system formed by three functional blocks,
Bk1, Bk2 and Bk3, in which Bk2 and Bk3 are working
at the same time in the state St1.

Fig. 2. Hierarchical FSM with Bk2 and Bk3 blocks

working simultaneously

Note that inside state St1 there is also other finite state
machine composed by the states (p,q,r,s).
In Fig. 2 we can see the difference between states and
functional blocks. States are represented using circles
and functional blocks are represented using squares. In
state St1, there are two functional blocks (Bk2 and
Bk3) working concurrently. In the state St2 there is
only one functional block (Bk1) working. Only one
state can run at the same time, but the blocks inside it
run concurrently.

3.2. Deterministic FSM
We say that a FSM is deterministic if from any state
exists at most one enabled transition for each input
symbol [13], in other case, the FSM is non
deterministic. In this paper, we are going to refer to
deterministic FSM.
Let’s assume i1,i2,…in the set of inputs to change from
one state to another. It is possible that not all the inputs
affect to all the states. For example, let’s have a system
that counts from 0 to 3. It has two inputs: “start” and
“count”. The condition to start counting is a pulse from
the input “start”. Once started, the counter must count
each time the input “count” is 1. The process keeps
until the counter reach the last state (the value is 3). A
new pulse in the input “count” will return the system to
the initial situation. The implementation as a FSM is
shown in the Fig. 3 and the Table 1.

Present
state

Input Next
state

Counter
value

St0 Start=’1’ St1 0
St1 Count=’1’ St2 1
St2 Count=’1’ St3 2
St3 Count=’1’ St0 3

Table 1: States and transitions for the counter example

Fig. 3. Example of FSM with two inputs

If the counter is in state 2 and a pulse from the input
“start” comes, it will not affect to the counter work.
This means that input “start” only affects if the state is
St0. Therefore, we only have to take an input into
account if the state can be affected by it.

3.3. State and transitions storage
In order to make the system a programmable FSM, it is
necessary to store the states and transitions in a
rewritable storage (i.e. a RAM). Therefore, by
rewriting the RAM it is possible to have a new FSM.
To store PSMs in RAM, some authors write all the
possible transitions in the memory and then create a
rule selector to discover which transition to make [8].
The problem of this method is that it needs a large
amount of memory. This can be a problem if we are
going to use this in a space mission with limited
resources of weight, size and power.
Almost always, the address bus is larger than the data
bus. We can use the address bus to increase the
maximum number of states that can be stored in RAM.
This allows us to store large PSM in a RAM, by using
less memory.
This is the key idea presented in this paper: to use the
address bus to encode the states and transitions. The
address bus encodes two items: one state and one input
to have reaction with it. The datum for this address
encodes the state to jump to.

Start=’1'

Count=’1'

The previous counter example (Fig. 3) will be used to
illustrate the way to store the PSM. There are four
states that can be encoded using 2 bits (binary
encoding). There are also 2 inputs with 1 bit wide. The
Table 2 codes the present state, the inputs value and the
next state.

Present
state:
Encoding

Input Next
state

St0: 00 Start=’1’ St1: 01
St1: 01 Count=’1’ St2: 10
St2: 10 Count=’1’ St3: 11
St3: 11 Count=’1’ St0: 00

Table 2. Table to encode a PSM for the counter
example

The Table 2 shows that each state is only affected by
one input. Therefore, we only will consider the
appropriate input for each state change in the address
encoding.
Using the address bus, we can encode the two first
columns of the Table 1. The third column (next state
column) is coded in the data bus. An example of
transition codification can be:

Address Data
State

encoding
Start
input

Count
input

Next State

0 0 1 0 0 1
Bit 3 Bit 2 Bit 1 Bit 0 Bit 1 Bit 0

Table 3: Address encoding for PSM counter example

If we are in the state St0 and the input “start” changes
from 0 to 1, the address to read would be 0010 address
(Table 3). In that position, the stored data will be the
encoding for the next state, in this case, the St1 state;
the data stored will be “01”, that is the encoding for St1
state.
This technique allows storing a machine with four
states and two inputs in two bits wide RAM with 4 bit
wide address bus.
The minimum number of bits of the address bus for
RAM to encode the PSM is shown in Eq. 1

Address Bits= log2n + ∑ik (1)

where n is the number of states, and ik is the total
number of bits of input k for the state machine. This
conclusion is valid for binary and gray encoding. The
number of bits will be higher if we encode the states
using other kind of encoding, like one hot [14].
In the design of a complicated system the number of
inputs can be quite high, increasing the RAM size
required. To avoid this, we can re-encode the inputs
using only the number of inputs used in each state. In
the case of the counter there are two inputs to the
system, but each state uses only one of them. As we

know this, we take into account only the maximum
number of inputs that affects to the relative state (for
the counter case, this number is 1). The table to read
the address would be this way:

Address Data
State

encoding
Input Next state

0 0 1 0 1
Bit 3 Bit 2 Bit 1 Bit 1 Bit 0

Table 4: Address re-encoding for the counter example

This means: if we are in the state “00” and the only
involved input (Start input) changes from 0 to 1, we
have to read the address 001 to know the following
state. Therefore, we have decreased the RAM address
bus wide from 4 to 3.
The RAM would be this way:

Address Data
001 01
011 10
101 11
111 11

Table 5: RAM encoding for example FSM

But looking to this table, we can see that there are
some non listed cases, which are related to impossible
combinations of inputs, therefore these addresses will
never be reached. However, in a space mission, all the
addresses will be properly filled, ensuring the
reliability of the system. The data for the non reachable
addresses will correspond to a dummy transition to the
present state.
For the example, this would be the final table:

RAM
Address

Data

000 00
001 01
010 01
011 10
100 10
101 11
110 11
111 11

Table 6: Complete RAM encoding for example FSM.
Shadow rows represent the dummy transitions

The advantage of this method is that we only have to
do one reading each time that it is necessary to change
the state, without any extra selection algorithm. This
also allows the possibility of change the RAM content
while we are executing one state, as the next state only
will be read when the input changes. Obviously, this is
possible but it is recommended to take appropriate
safety measures before doing it.

4. APPLICATION TO MEDUSA EXPERIMENT

To illustrate and test the goodness of our design
method let’s use it for MEDUSA experiment. In this
section we make a brief description of the MEDUSA
instrument and then we apply the control method
described before to control the instrument.

The MEDUSA instrument is composed of a set of
sensors to provide information about cumulative dust
mass flux and dust deposition rate, physical and
electrification properties of dust, size distribution of
sampled particles, and correlation between water
vapour abundance and time [16]. MEDUSA is a set of
several subsystems.

4.1. Optical and dust collection stage
This stage is allocated inside a sample volume. A laser
diode source provides light that is scattered by dust
particles that pass through the sampling volume [16].
Two mirrors are used to concentrate the forward and
backward scattered lights onto two photo-diode based
detectors, working in photovoltaic mode. The collected
particles fall onto a quartz crystal microbalance.
Microbalances (MBs) are sensitive to the total
deposited mass and they are well suited to measure the
mass of micron/sub-micron particles. Its transducer is
based on piezoelectric effect and it gives as output a
frequency modulated signal which is proportional to
the mass deposited on the sensor. It is necessary to take
into account that the output signal frequency of these
devices is also highly temperature dependent; therefore
it is advisable when reading to obtain the value of this
parameter as well.
The optical detectors and the quartz crystal
microbalance give also the exact count of the number
of particles inside sampling volume.
To collect particles inside the stage at a constant speed,
a pump creates a laminar flux.

4.2. Water vapour Microbalance Stage
This stage detects water vapour in the atmosphere. It is
based on a microbalance with an internally integrated
Peltier and a thermistor for thermal control. The
subsystem detects the water vapour by cooling the
sensor under the frost point with the Peltier, and
monitoring the deposition curve. This allows deriving
the condensation behavior in the Mars atmosphere. The
water frosts on the microbalance making the oscillation
frequency change, due to the variation of weight. Then
we can determine the atmospheric vapour partial
pressure and relative humidity at the time of
measurement.

4.3. Dust Deposition and Electrification Stage
(DDES)

This stage is constituted by three sensors: dust
deposition sensor, dust electrification sensor and a laser
anemometer. It is equipped with its own
microcontroller and it was thought as an independent
instrument in which power supply and spacecraft
communication are provided by the Main Electronics.

4.4. Main Electronics
The Main Electronics (ME) is in charge of
management of all the subsystems explained above and
the interface with platform central unit for
telecommands, telemetries and signals conditioning. It
is allocated in the common electronics box to the
whole platform. The ME also includes power
conversion and conditioning to satisfy MEDUSA
needs. The Instituto de Astrofísica de Andalucía
(CSIC) is responsible of the design, construction and
verification of the Main Electronics and the onboard
SW.

The Fig.4 shows a block diagram of the whole system

Fig. 4: Block diagram for MEDUSA experiment

In the case of MEDUSA, we can clearly define several
functional blocks:

− Optical block
− Dust microbalance block
− Water vapour microbalance block
− Dust deposition and electrification stage block

Power requirements prevent the different stages to be
on at the same time. This forces the instrument to
execute a sequence of actions, powering on a different
set of functional modules in each time. Every stage has
its own requirements and functional modes. This way,
we could define several functional states, attending to
the blocks working simultaneously.

4.5. PSM for MEDUSA experiment
According to the described before, we are going to
distinguish several states of higher hierarchy. These

states will perform the master state machine. Each of
them has in turn a slave state machine inside.
S0: No block working
S1: Optical block and Dust Microbalance block
working simultaneously
S2: Water vapour microbalance block working
S3: Dust deposition and electrification block working
Inside each state, we can define a new FSM. For
instance, for state S1 we have several sub states
according to the working requirements:
In Fig. 5 we can see the representation of this state
machine in form of a state chart:

Fig. 5: State chart diagram for MEDUSA instrument

Functional blocks are drawn with squares, and states
are drawn with circles. As we can see, the states S1 and
S2 are master states from others FSMs. State S3 is not
decomposed in any FSM. What we want to do is to
have the possibility of changing every transition in the
system. That would provide our design of flexibility.
To apply the method, let’s center on the state S1:
Optical system has to power laser on, does a calibration
of the photo-detectors and then it starts to acquire. Dust
deposition microbalance is working simultaneously
with the optical system, as explained in section 4.1.
According to our method, we can define a finite state
machine to control this stage. Our machine would have
five states:

- Idle: No work
- Laser: In this state, the laser must be power on

according to safety and power requirements
- Calibration: In this state we can determine the

necessary offsets and thresholds to start the
acquisition. The initial frequency of the
microbalance is also read.

- WaitParameters: In this state the system is
waiting for some special parameters such as
the power of laser or the maximum time for
timeouts

- Acquisition: Signals from optical detectors are
read and processed periodically. in order to
obtain the desired temporal resolution. If the
signals are over a predefined threshold noise
level, the corresponding data must be sent. If
not, the signals are discarded. In this state, the
dust microbalance starts working.

As we have 5 states, the minimum number of bits to
encode them is 3.

4.5.1. Analysis of the inputs

Let’s analyze the inputs to the finite state machine:
Idle state: We can only leave the idle state if the user
sends a special telecommand: telecommand “start”.
This will be then an input to the machine.
Laser state: As the laser is dangerous for human health,
for safety reasons we need two telecommands to power
it on: Arm laser, and then Init laser. There is a
maximum enabled time between both telecommands. If
the time is over, the laser does not power on, and sends
a pulse to indicate the time out. Let’s call it “Laser
timeout”. When the laser is powered, it sends a pulse to
indicate that it has been on properly. Let’s call this
pulse “Laser OK”. This pulse and “Laser Timeout”
pulse will also be inputs to the machine.
Calibration state: When the calibration process starts, it
can be stopped by sending a command: “Go to safe”.
This will automatically put the system on the idle state.
Therefore, that command will be an input to the
machine. If the calibration is already finished, it sends
a pulse to indicate it: “Calibration end”. This will be
other input to the machine.
Wait parameters State: When the calibration ends, the
system has to read some parameters from the memory
before starting the acquisition. When the read is
finished, the system sends a pulse to indicate it:
“Parameters OK”. This will be other input to the
machine.
Acquisition state: When the acquisition process starts,
it can be stopped by the command “Go to safe” that
has been already considered as an input to the FSM in
the calibration state. If this command is not received,
the acquisition will stop when the predefined run time
is over. This will generate a signal “End run time”,
that will be considered as an input to the FSM. In this
state the dust deposition microbalance is working. If
the frequency delta for the microbalance is over a
determined threshold, the microbalance sends a signal
“Dust Microbalance saturated”. This will be
considered as an input to the machine.
As conclusion, we have eight inputs to the system. But
the maximum number of inputs that affect to the same
state is three (for the acquisition state). As the inputs

are all one bit wide, we can use only three bits to
encode the inputs.
Therefore, we can build the following table:

Present
state

Encoding Inputs Next State

Idle 000 000 Idle
001 Laser

Laser 001
000 Laser
001 Idle
010 Calibration

Calibration 010
000 Calibration
001 Idle
010 WaitParameters

WaitParam 011 000 WaitParameters
001 Acquisition

Acquisition 100

000 Acquisition
001 Idle
010 Idle
100 Idle

Table 7: Encoding of states and transitions for S1 in
MEDUSA experiment

It is important to remark that the meaning of the bits
for the inputs is different in each state.

4.5.2. PSM encoding
To encode this, we will put the first three columns in
RAM address and the last column in the RAM data.
For example, if we are in the laser state and we receive
the input “LaserOK” (corresponding to the bit one of
the inputs for the laser) we will have to point to the
address:

Address Data

Laser state
encoding

Laser inputs
encode

Next state
encode

0 0 1 0 1 0 0 1 0
Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

Bit
0

Bit
2

Bit
1

Bit
0

Table 8: PSM Encoding for MEDUSA

In this case, the bit 0 of the address encodes the input
“Laser Timeout”. The bit 1 encodes the input “Laser
OK”, and the bit 2 is not used (a change in this bit will
be considered as a dummy transition).
In the address “001010”, we will find the encoding for
the next state: Calibration that is “010”.
Therefore, we only need 6 bits for the address and 3
bits for the data, as said in Eq.1 and we have a
programmable finite state machine for the S1 state of
our hierarchical finite state machine.
In the case of MEDUSA instrument, we have used an
external RAM with 20 bits for address, and 8 bits for
data. As we only need 6 bits for the address and 3 for
the data, the extra bits will be used to encode the higher
states hierarchy, the Hamming bits for the EDAC, the
science data, the context file where the parameters that

establish the general behaviour of the instrument are
stored, buffers for communication, etc .

4.5.3. Implementation
For analyzing and applying the memory contents, we
need a programmable device. For MEDUSA case, we
have chosen a FPGA (Field Programmable Gate
Array). Therefore we need a manager and an address
generator to control the machine. In the Fig. 6 we can
see the control system for the state machine inside the
FPGA.

Fig. 6. FSM control implementation block diagram

The external RAM stores the state machine. The block
“system” is one of the blocks to be controlled. Each
block working simultaneously will have its own
manager. The manager knows which the current state
is and can use the inputs to that state to decide whether
to change the state or not. There is a multiplexer to
select in each case which are the relevant inputs to the
state. The manager controls the multiplexer by sending
the current state.
The address generator composes the address to read by
knowing the current state and the current inputs. It is
started by the manager, which will read the RAM data
and put the system in the next state.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new method to
control complex systems using a Programmable
Hierarchical Finite State Machine stored in RAM. This
method allows us to have a complete control of the
whole system with minimum onboard software, and
reduced memory size.
The key idea is to use the address bus to encode states
and transitions. The address bus encodes two items:
one state and one input that have reaction with it. The
datum for this address encodes the state to jump to.

One of the main advantages of using this method is the
possibility of using reduced memory size and the fast
way of change the PSM, by only writing in RAM.
Moreover, it is necessary to perform only one memory
reading to change the state, without any extra selection
algorithm.
As future work, it is foreseen to test the goodness of
the state machine in front of a microprocessor. To do
that we are now developing new tests using a
breadboard designer for MEDUSA experiment. We are
going to use a FPGA with a 8051 core to compare it
with the stored FSM and the manager.

6. REFERENCES

1. N. Zacher and D. Kumar, Automated FSM Error
Correction for Single Event Upsets. 2004 MAPLD
International Conference.
2. Zhang, Sam Zhong. Creating safe state machines.
Mentor Graphics white paper. 2002.
3. Cummings, Clifford E. Coding and scripting
techniques for FSM desing with synthesis-optimized,
glitch-free ouputs. Synopsys User Group Conference
SNUG 2000 www.snug-universal.org.
4. Chapman, Ken ,PicoProcessors. October/November
de 2003, IEE Computing & Control Engineering.
5. U. Keller et al, OSIRIS – The Scientific Camera
System Onboard Rosetta. H. [ed.] Springer
Netherlands. No. 1-4, 2007, Space Science Reviews,
Vol. 128, pp. 433-506. 0038-6308 (Print) 1572-9672
(Online).
6. J.M. Castro Marín, V. J. G. Brown, A. C. López-
Jiménez, J. Rodríguez Gómez, Mechanism controller
system for the optical spectroscopic and infrared
remote imagin system instrument on board the Rosetta
space mission. [ed.] American Institute of Physics. No.
5, May 2001, Review of Scientific Instruments, Vol.
72, pp. 2423-2427.
7. L. Colangeli et al, The Grain Impact Analyser and
Dust Accumulator (GIADA) Experiment for the Rosetta
Mission: Design, Performances and First Results. [ed.]
Springer Netherlands. No. 1-4, 2007, Space Science
Reviews, Vol. 128, pp. 803-821. DOI 10.1007/s11214-
006-9038-5 .
8. Engbersen, J. van Lunteren, J. Bostian, B.Carey, C.
Larsson, XML Accelerator Engine.. New York, NY,
USA : s.n., May 2004. Workshop on High Performance
XML Processing, in conjunction with the 13th
International World Wide Web Conference
(WWW2004).
9. Wangyang Lai, Chin-Tau Lea, A programmable
State Machine Arquitecture for Packet Processing. No.
4, Jul/Aug, 2003, IEEE Micro, Vol. 23, págs. 32-42.
10. Chakraborty, Samarjit, Formal Languages and
Automata Theory. Regular Expressions and Finite
Automata. march de 2003, Computer Engineering and

Networks Laboratory. Swiss Federal Institute of
Technology (ETH) Zürich, pág. 17.
11. Sharker Sarwary, Michael A. Beaver. A systematic
approach to verifying FSMs. EDN: Electronic Design
News. October 27, 2005.
12. Harel, D, State charts: A visual formalism for
complex systems. 1987, Science on computer
programming, Vol. 8, págs. 231-274.
13. Alain Girault, Bilung Lee, and Edward A. Lee,
Hierarchical Finite State Machines with multiple
Concurrency Models. 6, June de 1999, IEEE
Transactions on computer-aided design of integrated
circuits and systems, Vol. 18.
14. Cummings, Clifford E. State Machine coding styles
for Synthesis. Synopsys User Group Conference SNUG
1998.
15. Sklyarov, Valery, Hierarchical Finite-State
Machines and Their Use for Digital Control. 1999,
IEEE TRANSACTIONS ON VERY LARGE SCALE
INTEGRATION (VLSI) SYSTEMS, Vol. 7, no. 2, pp.
222-228
16. L. Colangeli et al, MEDUSA: The ExoMars
experiment for in-situ monitoring of dust and water
vapour. 2008, Planet. Space Sci.
doi:10.1016/j.pss.2008.07.013.

	1. INTRODUCTION
	2. PROBLEM DESCRIPTION AND STATE OF THE ART ANALYSIS
	3. PSM ARCHITECTURE
	3.1. States and functional blocks
	3.2. Deterministic FSM
	3.3. State and transitions storage

	4. APPLICATION TO MEDUSA EXPERIMENT
	4.1. Optical and dust collection stage
	4.2. Water vapour Microbalance Stage
	4.3. Dust Deposition and Electrification Stage (DDES)
	4.4. Main Electronics
	4.5. PSM for MEDUSA experiment
	4.5.1. Analysis of the inputs
	4.5.2. PSM encoding
	4.5.3. Implementation

	5. CONCLUSIONS AND FUTURE WORK
	REFERENCES

