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ABSTRACT 

Five spacecraft successfully performed entry, descent 
and landing (EDL) on Mars in the past two decades. 
Post-flight reconstruction from flight data provides 
input for design margins and, especially in the case of 
atmospheric reconstruction, allows in-situ atmospheric 
science investigation of the Martian environment. The 
present work deals with uncertainty quantification 
(UQ) and considers both stochastic sampling (Monte 
Carlo) and Bayesian state estimation (Kalman filter). 
The consequences for UQ of accelerometer and 
gyroscope noise properties such as cross-correlation, 
Gaussianity and frequency content are assessed in a 
case study of the 2008 Phoenix reconstruction. White 
noise assumptions are shown to potentially 
overestimate reconstruction uncertainty bounds, both in 
Monte Carlo approaches and our preliminary Kalman 
filter implementation. This work was performed in 
preparation for the 2016 ESA ExoMars science 
investigation. 

1. INTRODUCTION 

Mars atmospheric entries are performed autonomously 
in a poorly known environment compared to Earth’s. 
Entry velocities typically in excess of 5 km/s are 
reduced mainly by aerodynamic drag. Entry system 
design requires predictions of atmospheric conditions 
and vehicle aerothermodynamics. Entry system design 
relies on wind tunnel testing, computational fluid 
dynamics (CFD) and atmospheric models. Comparison 
to flight is necessary to validate these tools and reduce 
uncertainty bounds on their predictions. To improve 
landing precision, maintain robustness while reducing 
design margins and to implement new flight 
technologies, post-flight reconstruction is essential. 
Reconstruction of the flown trajectory and atmospheric 
environment has been carried out for every Mars lander 
[1,2,3,4,5]. Accurate uncertainty bounds on those flight 
reconstructions are required for their interpretation. 

While the above engineering objectives drive in-flight 
data recording, scientific studies can utilize these 
measurements as well. Large scale oscillations of 
atmospheric temperature consistent with thermal tides 
were observed in a Phoenix reconstruction [6]. 
Pathfinder’s reconstruction suggested the presence of 
CO2 clouds, indeed confirmed later by observations 
from the landed platform [7,8]. Flight data from 
instrumented heat shields on future landers may be able 
to constrain wind profiles [9] at altitudes for which no 
such observations currently exist. Scientific 
conclusions drawn from flight data require accurately 
determined uncertainty bounds. 

In the present study we first characterize sensor noise 
in the 2008 Phoenix inertial flight measurement 
dataset. We then evaluate the modelling specific noise 
properties such as cross-correlation and frequency 
content for reconstruction UQ. First, two common 
Monte Carlo sampling approaches are compared. We 
then address the same question for a non-linear Kalman 
filter. 

2. CONVENTIONAL RECONSTRUCTION 
METHODOLOGY USING IMU DATA 

 
Fig. 1. Vehicle carried body frame with inertial 

and relative velocity vectors and flow angles 

 
 
 
 
 



2.1 Flight data preparation 

An Inertial Measurement Unit (IMU) is a package of 
accelerometers and gyroscopes that measures linear 
acceleration and angular rotation rates. Phoenix 
recorded six degrees of freedom (6-DOF) inertial rates 
at 200 Hz throughout the entire EDL. The current work 
uses the freely available raw IMU dataset [10] 
corrected for bias offsets and divided by Δt = 0.005 s to 
convert velocity and angular increments to rates. 

Figure 1 describes the body coordinate frame aligned 
with the Phoenix geometry and with its origin on the 
center of gravity. We refer to the body frame with 
indices x, y and z. Inertial and atmosphere relative 
velocity vectors are distinct. Angle of attack α, side slip 
angle β and total angle of attack αT express the 
atmosphere relative velocity direction relative to the 
body frame. 

The IMU data was transformed to the body frame from 
the local IMU frame using the transformation matrix 
given in [11]. Next, smoothing methods were selected 
to eliminate noise while avoiding artefacts such as 
smoothing bias. For the gyroscope data this was 
achieved with a 64 point moving window 2nd order 
polynomial fit. 

 
Fig. 2. Body frame IMU acceleration flight data 

Axial acceleration was smoothed using a custom 
method presented in [11]. Axial acceleration increases 
nearly exponentially before peak deceleration. The 
arithmetic mean of an exponential signal is not equal to 
the center value of the window considered, causing 
moving average smoothers to introduce a bias. This 
smoothing method eliminates that bias by combining 
moving average results obtained with different window 
sizes. Normal acceleration components exhibit no 

exponential rise and were smoothed with a 255 point 
moving average. Smoothed body frame acceleration 
data is shown in Figure 2, the data noise will be 
defined later as the raw data subtracted by these 
smoothed signals. 

2.1 Trajectory reconstruction 

From an initial state provided by [10] at approximately 
130 km altitude, smoothed accelerations and rotation 
rates were integrated with a 4th order Runge-Kutta 
routine. This provides the inertial flight trajectory of 
Phoenix up to parachute deployment. Other quantities 
including relative velocity, angle of attack and altitude 
above ground can be derived. Trajectory reconstruction 
is described in more detail in [12,13]. 

2.2 Atmospheric reconstruction 

In a second step, atmospheric profiles are derived from 
the trajectory. Atmospheric density is commonly 
estimated from the drag equation [11-14]. In Eq. 1, this 
equation is arranged to calculate atmospheric density 
as a function of measured deceleration: 

 𝜌∞(ℎ) = 2
𝑚 · |𝑎|

𝐶𝐷 · 𝐴𝑟𝑒𝑓 · �𝑉∞�2
 (1)  

𝝆∞(𝒉)  is the density profile versus altitude 𝒉, |𝒂�⃗ | the 
aerodynamic acceleration magnitude, 𝑪𝑫   the non-
dimensional aerodynamic drag coefficient, �𝑽∞� the air 
speed, 𝒎 the vehicle mass and 𝑨𝒓𝒆𝒇  the reference 
surface area based on the heat shield radius. Note that 
𝐶𝐷 is the predicted aerodynamic drag and cannot be 
constrained by IMU flight data. Any drag coefficient 
uncertainty is propagated directly to the reconstructed 
atmospheric density. In [14] the 3-σ uncertainty on 𝑪𝑫  
for Phoenix was estimated at ±3% above Mach 10 and 
±10% below Mach 5. 

Additional atmospheric profiles are derived from the 
density profile in two steps. First in Eq. 2, atmospheric 
pressure 𝒑∞(𝒉) is estimated by integrating density over 
altitude according to hydrostatic equilibrium. Second 
in Eq. 3, density and pressure are combined in the ideal 
gas law to derive atmospheric temperature 𝑻∞(𝒉) 

 𝑝∞(ℎ) = 𝑝∞(ℎ0) − � 𝑔 · 𝜌∞ · 𝑑ℎ
ℎ

ℎ0

 (2)  

 𝑇∞(ℎ) =
𝜇 · 𝑝∞
𝑅 · 𝜌∞

 
(3)  

with gravitational acceleration 𝒈, ideal gas constant 
𝑹 = 8.3144621 J/mol/K and molecular weight 𝝁 of the 
atmospheric gas. 𝝁 and 𝒈 vary slightly with altitude. 



Eq. 3 also requires a pressure boundary condition 
𝒑∞(𝒉𝟎) that was estimated by [11] for the high altitude 
initial trajectory state. 

3. PHOENIX IMU DATA NOISE ANALYSIS 

3.1 Noise characterization 

We define noise as the data removed by smoothing as 
described in Section 2. The objective is to construct a 
description of the IMU data noise for UQ approaches 
to use in the next sections. All noise was found to be 
distributed normally as illustrated by the gyroscope 
noise probability density function (PDF) in Figure 3, 
but also every other noise signal.  

 
Fig. 3. PDF of noise in gyroscope rotation rate ωy 

compared to Gaussian fit (normal distribution) 

Cross-correlations exist between the three spatial 
components of the accelerometer and gyroscope noise, 
as well as between accelerometer and gyroscope 
components. Figure 4 is a scatter plot of the axial ax 
and normal ay acceleration noise, including the 
eigenvectors of the covariance matrix between them. 
Perfectly horizontal and vertical eigenvectors indicate 
zero correlation, whereas the rotated noise cloud 
corresponds to a linear correlation coefficient [15] of 
about 0.35, normalized so that +1 equals total positive 
correlation. Cross-correlations exist between all noise 
signals, varying over time and bounded by ±0.40. 

 
Fig. 4. Scatter plot of cross-correlated noise in two 
accelerometer components, including covariance 

matrix eigenvectors 

Figure 5 shows the power spectral density (PSD) of the 
ωx gyroscope noise and of the ax acceleration noise. 
These PSD are also representative of the y and z 
acceleration and angular rate measurements. The IMU 
noise is contains relatively high frequencies. Sharply 
defined power peaks at 16 and 32 Hz for the 
gyroscopes, also 76 Hz for the accelerometers, may be 
digitization artefacts or mechanical resonance 
frequencies. However the main feature of these power 
spectra is limited frequency content below 50 Hz.  We 
refer to these frequency distributions as colored noise. 

 
Fig. 5. Power spectral densities (PSD) of IMU data 

noise in gyroscope rotation rate ωx (rad/s) 
and accelerometer velocity rate ax (m/s2) 

3.2 Noise description 

We confirmed that the normal distribution and the 
power spectral density are stationary properties of the 
IMU noise, meaning they vary only slightly from entry 



interface up to parachute deployment. On the other 
hand, cross-correlations vary over time. A noise 
description was constructed that consists of 

• Frequency dependent PSD per IMU signal. 

• One 6-by-6 covariance matrix with variances for 
diagonal elements co-variance for off-diagonal 
elements. 

• Co-variances are represented by 2nd order 
polynomial functions of time 

This description is practical for noise generation 
routines to use. We verified that those successfully 
generate noise with the characteristics just described. 
Table 1 lists the matrix diagonal elements, i.e. the 
Gaussian noise variance for every IMU signal. 

Tab. 1. Variance σ2 of IMU data noise during entry 

IMU noise variance 
(m/s2)2 IMU noise variance 

(rad/s)2 
ax 0.103 ωx 1.21e-6 
ay 0.225 ωy 1.00e-6 
az 0.253 ωz 0.90e-6 

4. UNCERTAINTY QUANTIFICATION: 
MONTE CARLO SAMPLING 

Monte Carlo sampling aims to approximate probability 
density functions (PDF) of calculation results, given 
the PDF of uncertain data inputs and parameters. For 
reconstruction, these are initial trajectory state 
uncertainty, IMU data noise and parameter uncertainty 
such as on the drag coefficient. By sampling inputs and 
calculating outputs N times, the resulting output 
samples tend to the output PDF for large N. While 
computationally expensive, Monte Carlo works for 
uncertainty descriptions and calculation routines of 
arbitrary complexity and form. 

Therefore we can choose to sample data noise using 
co-variances and frequency content (PSD) to generate 
cross-correlated colored noise for comparison with the 
common uncorrelated white noise assumption. Two 
distinct approaches were furthermore compared: 

for every of N Monte Carlo realizations: 

A) Generate and apply raw data noise before 
smoothing 

B) Generate and apply post-smoothing noise 
(without smoothing)  

Both approaches start from the smoothed IMU data 
obtained in Section 2. Approach A) is conceptually 

simple in that it runs through the entire reconstruction 
process including data smoothing for every Monte 
Carlo realization. Approach B) may be less expensive 
computationally, but its equivalence to A) requires an 
accurate description of the post-smoothing noise. The 
noise description constructed before is appropriate only 
for approach A), post-smoothing noise estimation is 
discussed below. 

4.1 Input uncertainty 

Figure 6 shows the 3-σ bound1 on the axial 
acceleration noise entering into the reconstruction, i.e. 
also for approach A) this represents the noise variance 
after smoothing. Every Monte Carlo was verified to 
have converged numerically, requiring N ≥ 1000 to 
2000. These results are compared to a similar Monte 
Carlo analysis in the Phoenix IMU reduced dataset 
published on the Planetary Data System (PDS) [11]. 

Cross-correlations had negligible impact and are not 
considered further. However, assuming white noise in 
approach A) significantly overestimated the 
acceleration noise. The smoothing methods perform 
less well for the generated white noise than for the real 
noise. By comparison, generated colored noise was 
smoothed out much better. Generating raw data noise 
in the Monte Carlo thus requires modelling the 
frequency content. 

For approach B), generating post-smoothing noise 
requires a different noise description. We used the 
variance of the post-smoothing noise obtained by A) 
with colored noise generation, but assumed this post-
smoothing noise to be white. Naturally the variance for 
approach B) in Figure 6 matches that of its definition 
A) with colored noise. The impact of the white noise 
assumption for B) is assessed below. 

1  three times the standard deviation or square root of 
the variances such as those listed in Table 1 

                                            



 
Fig. 6. IMU axial acceleration data input 

3-σ uncertainty in Monte Carlo’s 

Post-smoothing noise variance on PDS was calculated 
with an empirical formula, and is close to but slightly 
smaller than our colored noise Monte Carlo estimate. 
Conversely, normal acceleration to which the above 
conclusions also apply, have higher variance on PDS. 
Normal components are of secondary importance given 
their small magnitude (see Figure 2). 

4.2 Reconstruction output uncertainty 

Thus far we have discussed data input uncertainty. 
Now we present the resulting uncertainty bounds on 
reconstruction outputs. Figures 7 and 8 indicate that 
assuming white input noise may lead to significantly 
overestimated reconstruction uncertainty. Parachute 
opening altitude is reconstructed with over five times 
the confidence by taking into account noise frequency 
content. Uncertainty bounds on PDS correspond better 
with the overestimates and did assume white noise. 

Quantities such as angle of attack and altitude are 
primarily calculated from IMU data, whereas 
atmospheric density and derived atmospheric profiles 
rely also on the predicted drag coefficient. White noise 
assumptions had negligible impact on atmospheric 
profile uncertainty. Atmospheric reconstruction was 
based on measured acceleration and estimated drag 
coefficients: uncertainty of the latter significantly 
outweighed that on IMU measurements. 

 
Fig. 7. Monte Carlo 3-σ uncertainties on 

reconstructed total angle of attack 

 
Fig. 8. Monte Carlo 3-σ uncertainties on 

reconstructed altitude 

Although the post-smoothing noise for B) was assumed 
white, the resulting reconstruction uncertainty almost 
exactly matches A) with colored noise. This could be 
exploited to marginally speed up the Monte Carlo. 
However, since post-smoothing variance was estimated 
by going through the process of generating raw data 
noise and analysing the smoothed results, we prefer A) 
and include those steps in the Monte Carlo analysis. 

The PDS Monte Carlo results contain an apparent 
contradiction between low input uncertainty (Figure 6) 
and high output uncertainty (Figures 7-8). Results in 
the next section suggest that in [11], gyroscope noise 
was overestimated similar to the A) with white noise 
approach. Gyroscope noise is not described in great 
detail in [11], so currently we have not verified this 
conclusively.  



5. UNCERTAINTY QUANTIFICATION: 
KALMAN FILTERING 

Bayesian state estimation, of which Kalman filters are 
a particular implementation, is a different approach to 
EDL reconstruction and uncertainty quantification. 
State estimators operate on unsmoothed data and 
employ predictive models of both measurements (IMU 
data) and states (trajectory, atmosphere…) to calculate 
a state estimate with associated uncertainty bounds. 
Kalman filters are computationally cheaper than Monte 
Carlo sampling and while using similar equations, 
completely replace the conventional deterministic 
methodology presented in Section 2. 

5.1 Theory of recursive state estimation 

Consider the state vector x that describes a system 
under consideration. In this case it includes kinematic 
trajectory characteristics such as position and velocity, 
and atmospheric conditions such as density. The 
measurement vector z holds observations: unsmoothed 
IMU data. 

First, the state estimator’s prediction stage employs 
state propagation models (flight equations, atmospheric 
models) and measurement models that predict 
observations given some state. Second, the update 
stage confronts these predictions with the actual 
observations to infer a final estimate of the state 
probability density function (PDF). The update 
operation is based on the recursive Bayes’ rule in Eq. 4 
and is carried out for subsequent discrete time intervals 
distinguished by index k. 

𝑃 (𝑥𝑘|𝑧𝑘) ~ 𝑃 (𝑧𝑘|𝑥𝑘) ∙ 𝑃 (𝑥𝑘|𝑧𝑘−1) (4)  

PDF in Eq. 4 denoted by 𝑷(∙) from right to left: 

𝑃 (𝑥𝑘|𝑧𝑘−1)  prior state estimate from a prediction 
stage where current measurement zk is 
not used yet 

𝑃 (𝑧𝑘|𝑥𝑘) observation likelihood represents the 
update stage that incorporates the 
measurement zk 

𝑃 (𝑥𝑘|𝑧𝑘)  final state estimate xk given or 
‘conditional on’ measurements zk 

The prediction term can be expanded to reveal the 
previous final state estimate xk-1 and state propagation 
model. More complete introductions are presented in 
[16,17,18]. For the present work we highlight these key 
features of Bayesian state estimation: 

• Calculates and propagates PDF 

• Blends prediction with observation 

• May combine multiple measurement sets 

• General but abstract mathematical framework: 
practical implementations require simplification 
or approximation 

Combining multiple measurement sets is the main 
motivation for the current development of these 
methods for Mars EDL reconstruction [5,19]. Recent 
landers such as Mars Science Laboratory and ExoMars 
carry instrumented heat shields. State estimators are 
used to mix in those complementary observations of 
flow angles and atmospheric conditions. 

The issue of implementation has spurred development 
of dozens of filtering algorithms. The original Kalman 
filter [20] is an exact analytical solution but only for 
linear, Gaussian white noise state estimation problems. 
Other varieties of Kalman filters that can deal with 
non-linear models such as flight equations, or more 
complex PDF such as non-Gaussian and colored noise 
distributions, are approximate solutions2. 

5.2 UKF implementation 

The Kalman filter variety used here is the Unscented 
Kalman filter (UKF) that owes its name to ‘unscented 
transformations’ which propagate Gaussian probability 
densities through non-linear equations. Our UKF 
algorithm closely resembles that of [21]. 

Blending prediction and observation is different from 
conventional reconstruction methodology and requires 
predictive models. These are constructed from flight 
equations and atmospheric models. However there is 
no unique or conventional formulation of EDL 
reconstruction as a state estimation problem. The 
detailed design of state and observation models is not 
necessarily clear-cut, and appropriate uncertainties 
must to be attributed to them. An optimal formulation 
is the subject of future work and beyond the scope of 
this text. Our preliminary formulation is based on that 
of [5] but considers only IMU flight data. 

5.3 Preliminary UKF results  

Recalling the impact of white input noise in the Monte 
Carlo approaches, we now address the same question 
for the Kalman filter. The UKF uses unsmoothed IMU 
data and a data noise description composed only of the 
variances in Table 1. This implies uncorrelated white 
Gaussian noise. 

2 approximation can be negligible but also difficult to 
quantify, it may also cause numerical instability 

                                            



 
Fig. 9. Kalman filter (UKF) & Monte Carlo (MC) 

uncertainty bound on reconstructed inertial 
velocity Vy in planet centered coordinates 

Figure 9 shows the 3-σ bound on reconstructed inertial 
velocity that is mainly dependent on IMU data. The 
UKF predicts larger uncertainties than the Monte Carlo 
approach with colored noise and is more similar to the 
white noise overestimation and PDS results. These 
results suggest that perhaps by a smaller but significant 
amount, neglecting IMU data noise frequency content 
affects Kalman filters similarly as demonstrated by 
Monte Carlo before. 

Figure 10 shows similar results for one of four 
quaternion components that describe vehicle attitude. 
This quantity depends exclusively on gyroscope data. 
Uncertainty estimates from the UKF, Monte Carlo with 
white noise and PDS all match closely but overestimate 
compared to the Monte Carlo with colored noise 
bounds, which is much smaller but non-zero. Strong 
dependence of the quaternion on gyroscope data 
suggests that PDS gyroscope noise was overestimated 
consistently with white noise assumptions. 

Figure 11 confirms that as stated before, atmospheric 
reconstruction uncertainty is insensitive to IMU white 
noise assumptions. Atmospheric pressure and 
temperature are derived from the density profile and 
exhibit the same characteristic. 

 
Fig. 10. Kalman filter (UKF) & Monte Carlo (MC) 

uncertainty bound on reconstructed vehicle 
attitude (single quaternion component q0) 

 
Fig. 11. Kalman filter (UKF) & Monte Carlo (MC) 

uncertainty bound on reconstructed 
atmospheric density 

6. CONCLUSIONS 

Mars EDL reconstruction UQ was carried out for the 
entry phase using both Monte Carlo sampling and an 
Unscented Kalman filter. Raw accelerometer and 
gyroscope data from the Phoenix entry was found to 
contain Gaussian, cross-correlated, colored noise. 
Monte Carlo analyses indicated that IMU noise 
frequency content, including its effect on smoothing, 
should be evaluated carefully to calculate uncertainty 
bounds on trajectory reconstructions. When white 
noise assumptions were not justified, they 
overestimated reconstruction uncertainty which in most 
cases is conservative. Atmospheric reconstruction was 
almost insensitive to these assumptions. Neglecting 
cross-correlations had no significant impact. 



Preliminary results from the UKF suggest that these 
conclusions also apply to Bayesian state estimators. 
Future work will compare alternative formulations of 
EDL reconstruction as a Bayesian estimation problem, 
and assess the potential benefit of colored noise models 
for Kalman filters. 
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