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What is the Multi-Mission Earth Entry Vehicle (MMEEV)? Significant Changes from MMEEV Version 1.0:
« A vehicle design concept based on the Mars Sample Return EEV design. * The focus of the Version 2.0 development was to provide an update to the trade space
* Was first introduced at IPPW-6 in 2008; Version 1.0 summary provided at IPPW-7 in 2010. analyses provided in Version 1.0 with improvement to key MMEEV models.

* SIGNIFICANT improvements were made to the parametric vehicle model, including:

- ported to MATLAB from Pro-E to provide significant improvements in optimization convergence; Pro-E
still used for model validation
- increased scope and fidelity of user inputs
* Preserves key design elements which lower risk. « Updates to forebody PICA TPS Mass Estimating Relationship (MER) and development of
- “Chute-less” design: reduces risk and complexity of EEV. forebody Carbon Phenolic TPS MER

- Aerodynamic stability: provides robust performance using well understood aerodynamics;
includes re-orientation capability prior to heat pulse.

« MMEEV Provides a common platform by which key technologies can be identified, Impact Foam Materials Testing:

designed, developed and flight proven prior to implementation on MSR, providing
significant risk and development cost reductions to any sample return mission.

* Development is directed by NASA’s In-Space Propulsion Technology Program.

* Provides a reliable foundation upon which any sample return mission can optimize an EEV
design which meets their specific needs / requirements.
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« Rohacell® foams are credible candidates
for MMEEV energy absorbing materials.
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| aerodynamic performance is the low speed

* MMEEV parametric vehicle model handles both MSR impact architecture as well as a regime; much of MMEEV descent is subsonic

more simplified impact attenuation approach. | .= B (pear vertical) with no stability assist.

MMEEVbaselinel.m4v

* New inputs include payload size, nose radius, and shoulder radius. Also allows for 1; . ,‘ « CFD predictive capability is credible for static
selection of PICA (with Al-honeycomb carrier structure) or Carbon-Phenolic (with
Advanced Carbon-Carbon carrier structure).

* Given the large number of inputs and associated geometric relationships, several rules
and constraints are used to assist in the iterative / convergence process.

aerodynamics, but not demonstrated for
dynamics.

e A test in the NASA LaRC VST was executed in
FY 2010, to determine free-flight dynamics of
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MMEEV Version 2.0 Performance Summary:
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* The entire mission and vehicle trade space was run using the Version 2.0 models, for ce""a“?ed data ﬂow manager
both an MSR-like architecture (CP/ACC) and simplified architecture (PICA/Al-honeycomb). ?"d project requirements

* Results for the simplified architecture agree well with the Version 1.0 results, providing teveloped during MVEEV V1.0 and 2.0 interface to MMEEV concept
continuity in the MMEEV analyses as the models become higher fidelity and more ONInAEC AR EOpmEnTOrSARE LD studies, including MSR,

capable, and the trade space grows. expected to begin in FY 2012.



