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ABSTRACT 
 
On August 5th, 2012 the Mars Science Laboratory 
(MSL) entry vehicle successfully entered and landed 
on the Mars surface.  During Entry Descent and 
Landing (EDL), the Curiosity rover was carried by the 
entry vehicle and carefully lowered to the ground near 
Gale crater.  After completion of the EDL mission, 
trajectory reconstruction analyses were performed in 
order to assess the performance of the entry vehicle 
and compare its performance against pre-flight 
predictions.  Three semi-independent methods of 
reconstruction were performed, each relying on unique 
input data sets.  Uncertainty estimates of the outputs 
computed by each reconstruction were also generated.  
The uncertainty analysis for one of the reconstruction 
methods, the aerodatabase reconstruction method, is a 
novel approach not seen in previous literature.  This 
paper discusses the three reconstruction techniques and 
details the algorithms used to evaluate their 
uncertainties. 
 
1. INTRODUCTION 
 
The Mars Science Laboratory (MSL) entry vehicle 
successfully entered the Mars atmosphere and 
delivered the Curiosity rover to the Mars surface on 
August 5th, 2012.  In addition to safely landing the 
rover, the entry vehicle returned valuable Entry 
Descent and Landing (EDL) data to earth for a variety 
of purposes, including trajectory reconstruction.  Three 
semi-independent reconstruction methods were utilized 
for the MSL EDL – an inertial reconstruction, an 
aerodatabase reconstruction, and a Mars Entry 
Atmospheric Data System (MEADS) based 
reconstruction.  Each method relied on distinct 
measurements taken by the MSL entry vehicle during 
EDL to compute time histories of common trajectory 
parameters, such as position, velocity, attitude, 
dynamic pressure, angle of attack, and angle of 
sideslip.  In addition to performing the reconstruction 
of the entry trajectory, an uncertainty assessment was 
performed in order to identify the accuracy of each 
analysis technique.  The uncertainty or error 
assessment captures the statistical variances of the 

reconstructed outputs based on the known uncertainties 
of the measurements used to generate those 
reconstructions.  This paper is concerned specifically 
with the uncertainty assessments of the three 
reconstruction analyses.   
 
The inertial reconstruction was performed by 
integration of the non-linear dynamic equations of 
motion of the vehicle state.  This deterministic 
approach relied only on the measured accelerations and 
angular rates from the inertial measurement unit 
(IMU), as well as the initial condition of the entry 
vehicle.  Similarly, the input uncertainties and linear 
system dynamic matrices were used to integrate the 
covariance dynamic equations and determine the 
uncertainties associated with the inertial reconstruction 
outputs.  This approach, sometimes called a 
deterministic or navigated solution, is a common 
reconstruction technique [1-6].  It was used to provide 
an initial uncertainty assessment as an input to other 
analysis methods. 
 
The aerodatabase reconstruction was applied to extract 
angle of attack and angle of sideslip by solving a non-
linear system of equations relating accelerations from 
the IMU to force coefficients from the MSL 
aerodynamic database.  Additionally, estimates of 
density, pressure, and Mach number were recovered 
through computations involving the aerodatabase.  
Linear sensitivity matrices for each non-linear 
reconstruction equation were computed and a 
covariance mapping computation was performed to 
transform the input uncertainties into the reconstructed 
output uncertainties.  The input uncertainties were 
known beforehand, either through measurement 
specifications or previous analysis, such as the inertial 
reconstruction.  While this method of reconstruction 
has been previously used on several planetary missions 
(such as Pathfinder [2-3], Mars Exploration Rover [5], 
and Phoenix [6]), the covariance mapping technique to 
determine output uncertainties is a technique not 
previously applied to the problem and is a new result 
given in this paper. 
 



The MEADS-based pressure reconstruction makes use 
of seven forebody pressure measurements as a Flush 
Air Data System (FADS) to produce estimates of the 
angle of attack, angle of sideslip, dynamic pressure, 
static pressure, and Mach number.  The estimates are 
obtained from a nonlinear weighted least-squares 
algorithm at each measurement time.  A novel IMU-
aiding approach has been implemented in which the 
IMU velocity estimate is combined with MEADS-
derived speed of sound to produce an initial estimate of 
the Mach number.  This initial estimate is then refined 
in the nonlinear weighted least-squares algorithm.  The 
algorithm is iterated globally over the entire data set 
until the estimated speed of sound profile (and, 
consequently, Mach number) converges.  The 
uncertainties in the computed quantities arise naturally 
as a byproduct of the weighted least-squares algorithm, 
corresponding to the covariance matrix of the 
converged solution. 
 
This paper provides an overview of the reconstruction 
algorithms and the mathematical details of the 
uncertainty analysis procedures and results of the MSL 
EDL reconstruction. 
 
2. INERTIAL RECONSTRUCTION 
 
The inertial reconstruction was performed using an 
IMU-based algorithm to integrate the equations of 
motion that define the entry vehicle’s position, velocity 
and attitude.  Sensed axial acceleration and angular rate 
measurements, obtained at a rate of 200Hz, were 
passed to the reconstruction algorithm, acting as a 
forcing function during integration.  The initial 
condition of position, velocity and attitude were 
obtained from an orbit determination solution and star 
tracker update provided to the navigation filter prior to 
cruise stage separation.  The equations of motion, 
which are detailed in [7], were integrated using a 4th 
order Runge Kutta numerical integrator at a rate of 
200Hz.   
 
The accuracy, or uncertainty, of the inertial 
reconstruction was estimated through propagation of 
the statistics of the state variables.  Specifically, 
variances of the reconstructed states were computed 
through integration of the linear covariance dynamic 
equation, given in Eq. 1, 
 

                      TT BQBPAAPP ++=&                        (1) 

 
where A is the matrix of partial derivatives of the 
system dynamics with respect to the state, P is the 
covariance of the state variables, B is the matrix of 
partial derivatives of the system dynamics with respect 
to the process noise, and Q is the process noise matrix.   

In addition to the state parameters reconstructed 
through integration (position, velocity and attitude), 
several parameters, such as angle of attack and angle of 
sideslip, were computed through output 
transformations.  Output transformations requiring 
atmospheric states (i.e. dynamic pressure) utilized an 
atmosphere model developed from preflight mesoscale 
models superimposed on the reconstructed trajectory.  
Uncertainties of the derived outputs were generated by 
transformation of the state covariance computed from 
Eq. 1 using a central difference transform [8].  The 
inertial uncertainty estimation was validated against 
Monte Carlo results from pre-flight simulations to offer 
confidence in the uncertainty predictions. 
 
3. AERODATABASE RECONSTRUCTION 
 
The aerodatabase reconstruction was used to obtain 
estimates of angle of attack, angle of sideslip, density, 
pressure, Mach number, temperature and dynamic 
pressure.  Two loops were used to reconstruct these 
parameters – an outer loop performed reconstruction of 
the air data states and an inner loop performed 
reconstruction of angle of attack and sideslip.  The 
outer loop begins by computing density from axial 
force coefficient obtained from the MSL aerodatabase.  
The equation for density is given in Eq. 2, 
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where m is the vehicle mass, ax is the x-axis 
acceleration in the body frame, V is the vehicle 
velocity, S is the reference area of the vehicle and CA is 
the axial force coefficient extracted from the 
aerodatabase.  Note that the velocity of the vehicle 
used to compute density was obtained from the inertial 
reconstruction.  Static pressure is computed next 
through an Euler integration of the hydrostatic 
equation.  This computation is shown in Eq. 3, 
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where pk is pressure at the current time, pk-1 is pressure 
at the previous time, ρk is the density at the current 
time, gk is the current estimate of gravity based on 
altitude, rk is the altitude at the current time and rk-1 is 
the altitude at the previous time.  The estimate of 
pressure at the initial time was obtained from the 
inertial reconstruction.  Mach number was computed 
next as given by Eq. 4, 
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where V is the vehicle velocity and c is the speed of 
sound.  Finally, dynamic pressure was computed as 
given by Eq. 5, 
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where density was computed in Eq. 2 and velocity was 
obtained through the inertial reconstruction.  After the 
air data states are computed using Eqs. 2-5, the inner 
loop is initiated to determine angle of attack and angle 
of sideslip. 
 
The inner loop applied a Newton root solving 
algorithm to a non-linear system of equations that are 
functions of angle of attack and sideslip.  The 
equations were derived from the ratios of axial force 
coefficient to normal and side force coefficient, 
yielding a relationship between the ratios of 
accelerations and force coefficients [9-10].  
Rearranging the equations, as shown in Eq. 6, yields 
the non-linear system of equations to which the root 
finding algorithm was applied.  The algorithm 
converges to values of angle of attack and sideslip for 
which the equations equal zero, corresponding to the 
angle of attack and sideslip at the current time. 
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In Eq. 6, α is the angle of attack, β is the angle of 
sideslip, ax, ay and az are the body axis accelerations 
obtained from the IMU and transformed to the vehicle 
center of gravity, and CA, CY and CN are the axial, side, 
and normal force coefficients obtained from the 
aerodatabase.  Plots of the IMU data during entry can 
be found in [11]. 
 
At each time point, the Newton solver algorithm is 
used to converge upon the roots of Eq. 6.  Each 
iteration of the algorithm updates the independent 
variables of the function (angle of attack and sideslip) 
until the update between consecutive iterations is 
smaller than a chosen threshold.  The update equation 
to the Newton solver is given by Eq. 7,  
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where yi is the updated value of the set of independent 
variables in Eq. 6 (angle of attack and sideslip), yi-1 is 
the value of the set of independent variables at the 
previous algorithm iteration, F(yi-1) is the Jacobian 
matrix of partial derivatives of the function, f, with 
respect to independent variables at the previous 

iteration and f(yi-1) is the function, f, evaluated at the 
previous iteration.  Eq. 7 can be expanded in matrix 
form as shown by Eq. 8. 
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For convenience during the derivation of uncertainties, 
the inverse of the Jacobian has been substituted with a 
matrix whose elements are q, r, s and t.  Also note that 
all of the terms on the right hand side of Eq. 8 are 
evaluated at the previous algorithm iteration.  Once this 
algorithm converges upon updated values of angle of 
attack and sideslip, the updated values are passed to the 
outer loop of the reconstruction algorithm where the air 
data states are recomputed.  The reconstruction at the 
current time is complete when the parameters 
estimated inside of each loop have converged. 
 
3.1 Uncertainty estimation of air data states 
 
The uncertainties associated with the reconstructed 
parameters were computed using a linear covariance 
transformation technique.  The transformation maps 
input uncertainties to output uncertainties through 
linearization of the equations used to estimate the 
reconstructed states.  This technique was performed for 
the uncertainty estimates of air data states as well as 
angle of attack and sideslip.  The derivation of 
uncertainties for air data states is detailed in this 
section, and angle of attack and sideslip is given in the 
following section.  Pre-flight evaluations of the 
uncertainties were performed through comparison with 
Monte Carlo results.   
 
First, partial derivatives of each state estimate equation 
with respect to the equation’s independent variables 
were taken, as shown in Eqs. 9-13 for the pressure 
estimate equation (Eq. 3). 
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Using the partial derivatives computed in Eqs. 9-13, 
the variance in reconstructed pressure was determined 
by multiplying the vector of partial derivatives by the 
diagonal matrix of input variances, as shown in Eq. 14. 
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The other air data state estimates (density, Mach 
number and dynamic pressure) were also computed 
using the linear covariance transformation approach.  
Although not shown in this paper, the partial 
derivatives of their state equations were taken and 
partial derivative terms similar to those in Eqs. 9-13 
were obtained.   
 
3.2 Uncertainty estimation of angle of attack and 
sideslip 
 
Angle of attack and sideslip uncertainties were 
obtained using the same technique as the air data states, 
but taking the partial derivatives of Eq. 8 required 
numerical differentiation of the aerodynamic force 
coefficients.  The derivation for the angle of attack 
uncertainty is detailed in the section below.  While not 
shown in this paper, angle of sideslip uncertainty was 
derived in the exact same manner as angle of attack by 
replacing the angle of attack update equation with the 
angle of sideslip update equation.  The derivation 
begins with the angle of attack update equation, 
extracted from the matrix form of Eq. 8 as shown in 
Eq. 15.   
 

               














+−














−−=

−

−

−

−

−

−

−

−
−

1,

1,

1,

1,

1,

1,

1,

1,
1

iA

iY

ix

iy

iA

iN

ix

iz
ii

C

C

a

a
r

C

C

a

a
qαα

               (15) 

 
First, the partial derivative of this equation was taken 
with respect to αi-1 as shown in Eq. 16.  In Eq. 16, the 
partial derivatives of the ratios of force coefficients 
were evaluated using the quotient rule and the 
subsequent partial derivatives of the force coefficients 
were computed numerically using the aerodatabase.   
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Eq. 15 was also differentiated with respect to velocity, 
Mach number and uncertainty factor because the force 
coefficients are functions of these parameters.  This 
differentiation was performed by applying the chain 
rule, as shown in Eqs. 17-19.  Note that the uncertainty 
factor is a set of constants provided to the aerodatabase 
as an input in order to apply multiplier and adder 
corrections to the force and moment coefficients to 
account for off-nominal behavior. 
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In Eqs. 17-19, the differentiation of the force 
coefficients with respect to velocity, Mach number and 
uncertainty factor are performed numerically.  The 
differentiation of angle of attack with respect to the 
force coefficients was computed analytically by 
differentiating Eq. 15 as shown in Eqs. 20-22. 
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Finally, the output uncertainty transformation is 
performed by multiplying the vector of partial 
derivatives by the input covariance matrix.  This is 
shown by Eq. 23. 
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4. MEADS PROCESSING ALGORITHM 
 
4.1 Pressure Modeling and Model Uncertainty 
 
A CFD (Computational Fluid Dynamics)-based table 
lookup model was developed for analysis of the MSL 
air data system. This CFD database is based on 
supersonic and hypersonic regime pressure 
distributions from thin—layer Navier-Stokes solutions 
generated using the Langley Aerothermal Upwind 
Relaxation Algorithm (LAURA). The CFD database is 
from the same set of solutions as the flight 
aerodynamic database that was utilized in the 
aerodatabase reconstruction. The CFD database 
pressures were nondimensionalized using the 
freestream pressure and dynamic pressure of each 
solution. The nondimensionalization transforms the 
forebody pressures into pressure coefficient, which 
allows the CFD solutions to be used across a wide 
range of trajectories with different density and velocity 
profiles.  
 
Each CFD grid point consists of a full surface pressure 
distribution solution, with 37 clock angles in uniform 5 

degree increments and 61 cone angles with non-
uniform increments. These grid points can be 
interpolated as needed to provide estimates of the 
pressure distribution at any point on the aeroshell [11]. 
The pressures based on the CFD database are shown 
for a nominal trajectory in [11]. 
 
An uncertainty model of the CFD pressure distribution 
was developed to model various error sources, 
including basic wind tunnel to CFD differences, errors 
inherent to the wind tunnel data, deformation, OML 
(Outer Mold Line) change, grid refinement, ablation, 
protuberances, and port location uncertainties. Pressure 
measurement system error models consist of detailed 
transducer characterizations from thermal vacuum 
chamber calibrations, thermocouple measurement 
errors such that an inaccurate temperature is used in the 
calibration database, system noise and quantization, 
time tag errors and sampling delays, pressure path 
leaks, pneumatic lag, and thermal transpiration [12].  
These error sources were combined to produce 
measurement uncertainty inputs required by the 
reconstruction algorithm. 
 
4.2 MEADS Algorithm 
 
The MEADS data processing algorithm is an IMU-
aided pressure-based solution. In this approach, the 
IMU planet-relative velocity was used to aid the 
determination of Mach number in the solution for angle 
of attack, sideslip, dynamic pressure, and static 
pressure [12]. The IMU aiding approach avoids 
numerical issues associated with the weak 
observability of Mach number from pressures alone. 
The algorithm introduces Mach number as an 
additional pseudo-observation into a standard least-
squares fit of the state variables to the measured 
pressures that otherwise resembles the algorithm used 
for the Shuttle Entry Air Data System (SEADS) [13]. 
In the MEADS processing algorithm, the modeled 
pressure distribution was based on CFD solutions, 
whereas the SEADS algorithm used a modified 
Newtonian flow model that was calibrated based on 
wind tunnel experiments. The MEADS algorithm is 
given as follows. 
 
The atmospheric state vector was defined as 

[ ]spqx ,,,βα= , where α is the angle of attack, β is the 

angle of sideslip, q  is the dynamic pressure, and ps is 

the static pressure.  The quantity p is used to denote the 
vector of pressure measurements, and h(x) is the CFD-
based pressure model. Then, the measurement equation 
was written as 
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The measurement model was approximated about a 
reference value, x , using a first-order Taylor series 
expansion, given by Eq. 24. 
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where H
~

 is the Jacobian matrix of the measurement 
model evaluated at the reference condition. The 
preceding equation was recast as 
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where ( ) ( )xxHxhz
~~ +−=λ .  This equation takes the 

form of a linear regression problem, which was solved 
using the weighted least-squares method to find the 
best fit to the data. The solution is given by Eq.26, 
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where R is the measurement covariance matrix. 
 
Since the original relationship between the 
measurements and the states is nonlinear, the solution 
was iterated until convergence, by successively 
replacing x with x̂ . The covariance matrix of the state 
estimate error was computed using the relation in 
Eq.27. 
 

                          ( ) 11 ~~ˆ −−= HRHP T                           (27) 
 
To apply the IMU aiding to the least-squares 
algorithm, an estimate of the speed of sound was 
needed to compute Mach number from the IMU-
derived velocity.  Since the algorithm computes a 
speed of sound estimate based on the computed density 
and static pressure, the algorithm was iterated globally 
by updating the speed of sound estimate on each pass, 
based on the derived speed of sound from the previous 
iteration. For the MEADS reconstruction, the initial 
speed of sound profile was assumed to be 220 m/s, 
constant with altitude. Additionally, systematic errors 
in the pressure model were estimated using a batch 
least-squares fit of a cubic polynomial error model to 
the measured residuals. Additional details on the 
MEADS processing algorithm can be found in [12]. 
 
4.3 Pre-Flight Uncertainty Analysis 
 
Extensive pre-flight simulations were conducted to 
analyze the performance of the MEADS processing 
algorithm. These simulation studies included single 
variable sensitivity studies, linear covariance analysis, 

Monte Carlo analysis, and scale model flight testing at 
ballistic range facilities [14].  
 
An example of the pre-flight uncertainty analysis is 
shown in Fig. 1.  These results show the 3-σ 
uncertainties in the aerodynamic state estimate based 
on Monte Carlo statistics with a sample size of 2000 
cases, and the predicted uncertainties based on the state 
covariance estimate computed within the MEADS 
least-squares processing algorithm. Note that the 
MEADS uncertainties were computed from a nominal 
simulation run around which the Monte Carlos were 
initialized.  These results indicate that the predicted 
uncertainties based on the least-squares covariance 
matrix are a good match to the true statistics computed 
from the Monte Carlo simulation. This result gives 
confidence that the uncertainty predictions from the 
MEADS algorithm are accurate. 
 

 
Fig 1. Pre-flight MEADS vs Monte Carlo uncertainty 
estimates 
 
5. UNCERTAINTY ASSESSMENT RESULTS 
 
The uncertainty estimates from the three reconstruction 
methods were compared to assess their respective 
accuracies.   Each method relied on a different set of 
inputs and their uncertainties reflect the accuracy of the 
inputs based on how the reconstructed state 
uncertainties were computed – either through 
propagation of covariance dynamics or transformation 
of input covariance.  Ideally, there should exist some 
region of the uncertainty bounds of each reconstruction 
that overlap at each time point in the trajectory.  In 
spite of differences in uncertainty between 
reconstruction methods, an overlapping region suggests 
that there is some value of the reconstructed state that 
all three methods agree upon.  Such a result provides 
confidence in the reconstruction because the three 
semi-independent techniques are effectively offering 
support towards one another.  
 



Figs. 2 and 3 show the uncertainty in angle of attack as 
estimated by the three methods of reconstruction.  Fig. 
2 shows the error between the inertial reconstruction 
and the aerodatabase and MEADS reconstructions.  
The 3-σ uncertainties are also shown in the figure to 
assess the relative performance of the reconstructions 
as compared to their uncertainties.  Fig. 3 shows a 
comparison of the 3-σ uncertainties of each 
reconstruction.  Similarly, angle of sideslip uncertainty 
is shown in Figs. 4-5. 
 
The three angle of attack reconstructions agree with 
each other very well, with a maximum difference 
between any two reconstructions no greater than two 
degrees.  The MEADS and inertial reconstructions 
agree best, with a maximum difference no greater than 
one degree.  Uncertainties bounding angle of attack are 
greatest for the aerodatabase reconstruction with a 3-σ 
value of 2.35 degrees at 600 seconds.  Over the 
trajectory, this uncertainty grows, reaching a maximum 
3-σ value of 7.0 degrees at 748.2 seconds.  The 
estimates of angle of attack uncertainty from the 
inertial and MEADS reconstructions are of roughly the 
same order, and are smaller than those of the 
aerodatabase reconstruction.  For most of the 
reconstructed trajectory, the inertial estimates of 3-σ 
uncertainty are below one degree, with brief segments 
over one degree between 671.4 and 677.9 seconds, as 
well as after 741.6 seconds.  The MEADS 3-σ 
uncertainty estimate exceeds one degree after 668.4 
seconds and reaches a maximum value of 1.68 degrees 
at the end of the reconstruction. 
 

 
Fig 2. Angle of attack difference and uncertainty 

 

 
Fig 3. Angle of attack uncertainty 

 
The three angle of sideslip reconstructions agree with 
each other very well, with a maximum difference 
between any two reconstructions no greater than 1.6 
degrees.  The differences between all three 
reconstructions are very similar, and the largest 
differences occur between the aerodatabase and 
MEADS reconstructions.  As with the angle of attack 
reconstruction, the uncertainties bounding angle of 
sideslip are greatest for the aerodatabase 
reconstruction.  The initial 3-σ uncertainty in the 
aerodatabase reconstruction is 2.7 degrees, and a 
minimum uncertainty of 2.3 degrees occurs at 650.2 
seconds.  The uncertainty grows after this minimum 
value and reaches a maximum of 4.0 degrees by the 
end of the reconstruction.  The sideslip uncertainty 
estimate from the inertial reconstruction is significantly 
lower than that of the other two reconstruction 
methods.  An initial value of 3-σ uncertainty is 0.29 
degrees.  The uncertainty grows, reaching a value of 
2.73 degrees by the end of the reconstruction.  The 
MEADS uncertainty estimate of angle of sideslip lies 
in between the uncertainty estimates of the inertial and 
aerodatabase reconstructions.  The MEADS 3-σ 
uncertainty has an initial value of 1.25 degrees, over 
four times greater than the initial uncertainty in sideslip 
for the inertial estimate.  While there is a large 
difference at the beginning of the reconstruction, the 
MEADS and inertial uncertainty estimates converge to 
roughly the same value of 3-σ uncertainty by the end of 
the reconstruction.  The MEADS 3-σ estimate of 
sideslip uncertainty is 2.8 degrees at 770 seconds. 
 



 
Fig 4. Angle of sideslip difference and uncertainty 

 

 
Fig 5. Angle of sideslip uncertainty 

 
Figs. 6 and 7 show a comparison of the reconstructed 
dynamic pressure uncertainties from the three methods.  
The reconstructions are in reasonable agreement, with 
no two reconstructions differing by greater than 15%.  
The inertial and MEADS reconstructions are most 
similar with maximum differences of roughly four 
percent during the trajectory.  The aerodatabase 
reconstruction deviates furthest from the other two 
methods, with maximum differences reaching 10.7% 
against the inertial reconstruction and 9.2% against the 
MEADS reconstruction.   
 

 
Fig 6. Dynamic pressure difference and uncertainty 

 

 
Fig 7. Dynamic pressure uncertainty 

 
The lowest uncertainties in dynamic pressure are seen 
in the MEADS reconstruction, with 1-σ uncertainties 
that do not exceed 0.75% of the reconstructed value, as 
shown in Fig. 9.  This is in stark contrast with the 
inertial uncertainties, which vary between 5% and 12% 
of the reconstructed value, and the aerodatabase 
uncertainties, which vary between 14% and 15% of the 
reconstructed value.  The 1-σ uncertainty estimates 
from the inertial and aerodatabase reconstructions 
relative to their reconstructed values are shown in Figs. 
8 and 10.  As expected, the MEADS pressure port data 
provides a higher accuracy reconstruction of 
parameters related to air data states. 
 



 
Fig 8. Dynamic pressure uncertainty - inertial 

reconstruction 
 

 
Fig 9. Dynamic pressure uncertainty - MEADS 

reconstruction 
 

 
Figure 10. Dynamic pressure uncertainty - 

aerodatabase reconstruction 
  

A comparison of the reconstructed density uncertainty 
estimates are shown in Figs. 11 and 12.  Whereas the 
inertial reconstruction relies on a pre-determined 
atmosphere model, the MEADS and aerodatabase 

reconstructions of density are able to estimate density 
directly from flight data.  Between 620 and 680 
seconds, the hypersonic region of flight, the inertial 
reconstruction agrees best with the MEADS 
reconstruction of density, with differences no greater 
than (roughly) 3%.  Beyond 700 seconds, during 
supersonic flight, the inertial reconstruction agrees best 
with the aerodatabase estimate of density, with 
differences approximately on the order of 2% to 4%.  
The difference between the MEADS and aerodatabase 
reconstructions grows steadily from the beginning of 
the reconstruction reaching a maximum difference of 
10.3%. 
 

 
Figure 11. Density difference and uncertainty 

 

 
Figure 12. Density uncertainty 

 
A comparison of the 3-σ density uncertainty estimates 
are shown in Fig. 12.  Similar to the dynamic pressure 
uncertainty estimates, the density uncertainties are 
lowest for the MEADS reconstruction algorithm.  The 
1-σ density uncertainties as a percentage of the 
reconstructed value are shown in Figs. 13-15.  The 
MEADS uncertainties do not exceed 5% of their 
reconstructed values over the reconstructed trajectory.  
This is significantly larger than the MEADS dynamic 
pressure uncertainties, most likely due to the very low 



uncertainty contributions of velocity in computing 
dynamic pressure.  The aerodatabase and inertial 
uncertainty estimates of density are very similar to 
their dynamic pressure uncertainty estimates.  These 
results provide a high level of confidence in the 
reconstructions because the uncertainties are small and 
the three reconstructions agree reasonably well. 
 

 
Figure 13. Density uncertainty - inertial reconstruction 

 

 
Figure 2. Density uncertainty - MEADS reconstruction 

 

 
Figure 3. Density uncertainty - aerodatabase 

reconstruction 
 
6. CONCLUSION 
 
Three semi-independent methods were applied to 
perform reconstruction of the MSL EDL trajectory.  
Each method utilized a different set of inputs to 
reconstruct several common parameters.  Additionally, 
the reconstructions provided assessments of the 
accuracy of each reconstruction through analysis of the 
state’s statistical properties.  A novel method of 
uncertainty estimation was used by the aerodatabase 
reconstruction algorithm.  This technique performed a 
transformation of input covariances into output 
covariances through linearization of the estimation 
equations.  Each method of reconstruction and 
uncertainty estimation was described and the resulting 
uncertainty estimates of reconstructed states were 
compared.   The results between the three approaches 
showed strong agreement, and overlapping uncertainty 
bounds, indicating accurate and consistent 
reconstruction by all three methods. 
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