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ABSTRACT

On August 8, 2012 the Mars Science Laboratory
(MSL) entry vehicle successfully entered and landed
on the Mars surface. During Entry Descent and
Landing (EDL), the Curiosity rover was carried Imet
entry vehicle and carefully lowered to the grourém
Gale crater. After completion of the EDL mission,
trajectory reconstruction analyses were performed i
order to assess the performance of the entry \ehicl
and compare its performance against pre-flight
predictions.  Three semi-independent methods of
reconstruction were performed, each relying on umiq
input data sets. Uncertainty estimates of the watp
computed by each reconstruction were also generated
The uncertainty analysis for one of the reconsioact
methods, the aerodatabase reconstruction methed, is
novel approach not seen in previous literature.is Th
paper discusses the three reconstruction technangks
details the algorithms used to evaluate their
uncertainties.

1. INTRODUCTION

The Mars Science Laboratory (MSL) entry vehicle
successfully entered the Mars atmosphere and
delivered the Curiosity rover to the Mars surface o
August 8" 2012. In addition to safely landing the
rover, the entry vehicle returned valuable Entry
Descent and Landing (EDL) data to earth for a varie
of purposes, including trajectory reconstructidrree
semi-independent reconstruction methods were eiliz
for the MSL EDL — an inertial reconstruction, an

aerodatabase reconstruction, and a Mars Entry
Atmospheric Data System (MEADS) based
reconstruction. Each method relied on distinct

measurements taken by the MSL entry vehicle during
EDL to compute time histories of common trajectory
parameters, such as position, velocity, attitude,
dynamic pressure, angle of attack, and angle of
sideslip. In addition to performing the reconstiome

of the entry trajectory, an uncertainty assessmers

performed in order to identify the accuracy of each
analysis technique. The uncertainty or error
assessment captures the statistical variances ef th

reconstructed outputs based on the known uncegsint
of the measurements used to generate those
reconstructions. This paper is concerned spetiifica
with the uncertainty assessments of the three
reconstruction analyses.

The inertial reconstruction was performed by
integration of the non-linear dynamic equations of
motion of the vehicle state. This deterministic
approach relied only on the measured acceleratinds
angular rates from the inertial measurement unit
(IMU), as well as the initial condition of the epntr
vehicle. Similarly, the input uncertainties andefar
system dynamic matrices were used to integrate the
covariance dynamic equations and determine the
uncertainties associated with the inertial recamsion
outputs. This approach, sometimes called a
deterministic or navigated solution, is a common
reconstruction technique [1-6]. It was used tovjule

an initial uncertainty assessment as an input berot
analysis methods.

The aerodatabase reconstruction was applied taatxtr
angle of attack and angle of sideslip by solvingoa-
linear system of equations relating acceleratioosmf
the IMU to force coefficients from the MSL
aerodynamic database. Additionally, estimates of
density, pressure, and Mach number were recovered
through computations involving the aerodatabase.
Linear sensitivity matrices for each non-linear
reconstruction equation were computed and a
covariance mapping computation was performed to
transform the input uncertainties into the recardtd
output uncertainties. The input uncertainties were
known beforehand, either through measurement
specifications or previous analysis, such as teetial
reconstruction. While this method of reconstructio
has been previously used on several planetary onissi
(such as Pathfinder [2-3], Mars Exploration Rov&; [
and Phoenix [6]), the covariance mapping technigue
determine output uncertainties is a technique not
previously applied to the problem and is a new Itesu
given in this paper.



The MEADS-based pressure reconstruction makes use
of seven forebody pressure measurements as a Flush
Air Data System (FADS) to produce estimates of the
angle of attack, angle of sideslip, dynamic pressur
static pressure, and Mach number. The estimates ar
obtained from a nonlinear weighted least-squares
algorithm at each measurement time. A novel IMU-
aiding approach has been implemented in which the
IMU velocity estimate is combined with MEADS-
derived speed of sound to produce an initial eséroé

the Mach number. This initial estimate is thernned

in the nonlinear weighted least-squares algoritirhe
algorithm is iterated globally over the entire datt

until the estimated speed of sound profile (and,
consequently, Mach number) converges. The
uncertainties in the computed quantities ariserafyu

as a byproduct of the weighted least-squares algoyi
corresponding to the covariance matrix of the
converged solution.

This paper provides an overview of the reconstoucti
algorithms and the mathematical details of the
uncertainty analysis procedures and results oM8é
EDL reconstruction.

2. INERTIAL RECONSTRUCTION

The inertial reconstruction was performed using an
IMU-based algorithm to integrate the equations of
motion that define the entry vehicle’s positionloogy

and attitude. Sensed axial acceleration and angatia
measurements, obtained at a rate of 200Hz, were
passed to the reconstruction algorithm, acting as a
forcing function during integration.  The initial
condition of position, velocity and attitude were
obtained from an orbit determination solution atat s
tracker update provided to the navigation filteiopto
cruise stage separation. The equations of motion,
which are detailed in [7], were integrated usingth
order Runge Kutta numerical integrator at a rate of
200Hz.

The accuracy, or uncertainty, of the inertial
reconstruction was estimated through propagation of
the statistics of the state variables. Specifjcall
variances of the reconstructed states were computed
through integration of the linear covariance dyrami
equation, given in Eq. 1,

P=AP+PA" + BQB' (1)
where A is the matrix of partial derivatives of the
system dynamics with respect to the st&eis the
covariance of the state variablds,is the matrix of
partial derivatives of the system dynamics withpeas
to the process noise, afdis the process noise matrix.

In addition to the state parameters reconstructed
through integration (position, velocity and attieQd
several parameters, such as angle of attack ard ahg
sideslip, were computed through output
transformations.  Output transformations requiring
atmospheric states (i.e. dynamic pressure) utilized
atmosphere model developed from preflight mesoscale
models superimposed on the reconstructed trajectory
Uncertainties of the derived outputs were generhted
transformation of the state covariance computechfro
Eq. 1 using a central difference transform [8]. eTh
inertial uncertainty estimation was validated again
Monte Carlo results from pre-flight simulationsdffer
confidence in the uncertainty predictions.

3. AERODATABASE RECONSTRUCTION

The aerodatabase reconstruction was used to obtain
estimates of angle of attack, angle of sideslimsdg,
pressure, Mach number, temperature and dynamic
pressure. Two loops were used to reconstruct these
parameters — an outer loop performed reconstruction
the air data states and an inner loop performed
reconstruction of angle of attack and sideslip. e Th
outer loop begins by computing density from axial
force coefficient obtained from the MSL aerodat@&bas
The equation for density is given in Eq. 2,

_ 2may
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where m is the vehicle massa, is the x-axis
acceleration in the body frame/ is the vehicle
velocity, Sis the reference area of the vehicle &ads

the axial force coefficient extracted from the
aerodatabase. Note that the velocity of the vehicl
used to compute density was obtained from theialert
reconstruction.  Static pressure is computed next
through an Euler integration of the hydrostatic
equation. This computation is shown in Eq. 3,

Pe = Prca = POk Tk ~Tieca) (3)
wherepy is pressure at the current tinpg,; is pressure

at the previous timepy is the density at the current
time, gy is the current estimate of gravity based on
altitude, ry is the altitude at the current time and is

the altitude at the previous time. The estimate of
pressure at the initial time was obtained from the

inertial reconstruction. Mach number was computed
next as given by Eq. 4,
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whereV is the vehicle velocity and is the speed of
sound. Finally, dynamic pressure was computed as
given by Eq. 5,

g==pv2 5)

N

where density was computed in Eq. 2 and velocitg wa
obtained through the inertial reconstruction. Aftee

air data states are computed using Egs. 2-5, therin
loop is initiated to determine angle of attack amdjle

of sideslip.

The inner loop applied a Newton root solving
algorithm to a non-linear system of equations trat
functions of angle of attack and sideslip. The
equations were derived from the ratios of axiaktéor
coefficient to normal and side force -coefficient,
yielding a relationship between the ratios of
accelerations and force coefficients [9-10].
Rearranging the equations, as shown in Eq. 6, yield
the non-linear system of equations to which thet roo
finding algorithm was applied. The algorithm
converges to values of angle of attack and siddstip
which the equations equal zero, corresponding ¢o th
angle of attack and sideslip at the current time.

az_CN
_[tl@B) _Ja, cal.
f(a'ﬂ)_{fz(a,ﬁ)}_ a_y+C_Y =0 (6)
a, Cj

In Eq. 6,a is the angle of attacks is the angle of
sideslip,a,, & anda, are the body axis accelerations
obtained from the IMU and transformed to the vehicl
center of gravity, an€,, C, andCy are the axial, side,
and normal force coefficients obtained from the
aerodatabase. Plots of the IMU data during erdry c
be found in [11].

At each time point, the Newton solver algorithm is
used to converge upon the roots of Egq. 6. Each
iteration of the algorithm updates the independent
variables of the function (angle of attack and slig¢
until the update between consecutive iterations is
smaller than a chosen threshold. The update eguati
to the Newton solver is given by Eq. 7,

Yi = Vi~ F(Yi) 7 F(Yica) (7)

wherey; is the updated value of the set of independent
variables in Eqg. 6 (angle of attack and sideslp),is

the value of the set of independent variables at th
previous algorithm iterationF(y,;) is the Jacobian
matrix of partial derivatives of the functiom, with
respect to independent variables at the previous

iteration andf(y.,) is the functionf, evaluated at the
previous iteration. Eq. 7 can be expanded in matri
form as shown by Eq. 8.
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For convenience during the derivation of uncertagmt
the inverse of the Jacobian has been substitutddawi
matrix whose elements agg r, sandt. Also note that
all of the terms on the right hand side of Eq. 8 ar
evaluated at the previous algorithm iteration. ©tigs
algorithm converges upon updated values of angle of
attack and sideslip, the updated values are passbé
outer loop of the reconstruction algorithm where dir
data states are recomputed. The reconstructitheat
current time is complete when the parameters
estimated inside of each loop have converged.

(8)

3.1 Uncertainty estimation of air data states

The uncertainties associated with the reconstructed
parameters were computed using a linear covariance
transformation technique. The transformation maps
input uncertainties to output uncertainties through
linearization of the equations used to estimate the
reconstructed states. This technique was perforfored
the uncertainty estimates of air data states ak asgel
angle of attack and sideslip. The derivation of
uncertainties for air data states is detailed irs th
section, and angle of attack and sideslip is givnetie
following section.  Pre-flight evaluations of the
uncertainties were performed through comparisoh wit
Monte Carlo results.

First, partial derivatives of each state estimaj@a¢ion
with respect to the equation’s independent varible
were taken, as shown in Eqgs. 9-13 for the pressure
estimate equation (Eq. 3).

;’kak_l - ©)

g%t = _gk(rk - rk—l) (10)
gglt = _pk(rk - rk—l) (11)
Z% = =Pk (12)
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Using the partial derivatives computed in Egs. 9-13
the variance in reconstructed pressure was detedmin
by multiplying the vector of partial derivatives ilye
diagonal matrix of input variances, as shown in H4.
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The other air data state estimates (density, Mach
number and dynamic pressure) were also computed
using the linear covariance transformation approach
Although not shown in this paper, the partial
derivatives of their state equations were taken and
partial derivative terms similar to those in Eqsl®
were obtained.

3.2 Uncertainty estimation of angle of attack and
sideslip

Angle of attack and sideslip uncertainties were
obtained using the same technique as the air thttss
but taking the partial derivatives of Eq. 8 reqdire
numerical differentiation of the aerodynamic force
coefficients. The derivation for the angle of ekta
uncertainty is detailed in the section below. \Whibt
shown in this paper, angle of sideslip uncertaings
derived in the exact same manner as angle of alttack
replacing the angle of attack update equation with
angle of sideslip update equation. The derivation
begins with the angle of attack update equation,
extracted from the matrix form of Eg. 8 as shown in
Eqg. 15.

(15)

First, the partial derivative of this equation wagen
with respect taz., as shown in Eq. 16. In Eq. 16, the
partial derivatives of the ratios of force coefiots
were evaluated using the quotient rule and the
subsequent partial derivatives of the force coieffits
were computed numerically using the aerodatabase.

00 _y4q O[S ) 0 [Svin) g
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Eqg. 15 was also differentiated with respect to oo
Mach number and uncertainty factor because thesforc
coefficients are functions of these parameters.is Th
differentiation was performed by applying the chain
rule, as shown in Eqgs. 17-19. Note that the uageyt
factor is a set of constants provided to the adeddee

as an input in order to apply multiplier and adder
corrections to the force and moment coefficients to
account for off-nominal behavior.
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In Egs. 17-19, the differentiation of the force

coefficients with respect to velocity, Mach numbed
uncertainty factor are performed numerically. The
differentiation of angle of attack with respect ttee
force coefficients was computed analytically by
differentiating Eq. 15 as shown in Eqgs. 20-22.
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Finally, the output uncertainty transformation is
performed by multiplying the vector of partial
derivatives by the input covariance matrix. Thss i
shown by Eqg. 23.
da, loa,, |
oa; 10V;_
0_(2] - 1 i-1
booa; oM,
oa; /0U;_4

x (23)
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4. MEADSPROCESSING ALGORITHM
4.1 Pressure Modeling and M odel Uncertainty

A CFD (Computational Fluid Dynamics)-based table
lookup model was developed for analysis of the MSL
air data system. This CFD database is based on
supersonic and hypersonic  regime  pressure
distributions from thin—layer Navier-Stokes solutso
generated using the Langley Aerothermal Upwind
Relaxation Algorithm (LAURA). The CFD database is
from the same set of solutions as the flight
aerodynamic database that was utlized in the
aerodatabase reconstruction. The CFD database
pressures were nondimensionalized wusing the
freestream pressure and dynamic pressure of each
solution. The nondimensionalization transforms the
forebody pressures into pressure coefficient, which
allows the CFD solutions to be used across a wide
range of trajectories with different density andoegy
profiles.

Each CFD grid point consists of a full surface pues
distribution solution, with 37 clock angles in umifn 5

degree increments and 61 cone angles with non-
uniform increments. These grid points can be
interpolated as needed to provide estimates of the
pressure distribution at any point on the aeroqhél].

The pressures based on the CFD database are shown
for a nominal trajectory in [11].

An uncertainty model of the CFD pressure distritti
was developed to model various error sources,
including basic wind tunnel to CFD differences,oesr
inherent to the wind tunnel data, deformation, OML
(Outer Mold Line) change, grid refinement, ablafion
protuberances, and port location uncertaintiessdire
measurement system error models consist of detailed
transducer characterizations from thermal vacuum
chamber calibrations, thermocouple measurement
errors such that an inaccurate temperature is insibe
calibration database, system noise and quantization
time tag errors and sampling delays, pressure path
leaks, pneumatic lag, and thermal transpiration.[12
These error sources were combined to produce
measurement uncertainty inputs required by the
reconstruction algorithm.

4.2 MEADS Algorithm

The MEADS data processing algorithm is an IMU-
aided pressure-based solution. In this approaad, th
IMU planet-relative velocity was used to aid the
determination of Mach number in the solution foglan

of attack, sideslip, dynamic pressure, and static
pressure [12]. The IMU aiding approach avoids
numerical issues associated with the weak

observability of Mach number from pressures alone.
The algorithm introduces Mach number as an
additional pseudo-observation into a standard Jeast
squares fit of the state variables to the measured
pressures that otherwise resembles the algorithed us

for the Shuttle Entry Air Data System (SEADS) [13].

In the MEADS processing algorithm, the modeled

pressure distribution was based on CFD solutions,
whereas the SEADS algorithm used a modified

Newtonian flow model that was calibrated based on
wind tunnel experiments. The MEADS algorithm is

given as follows.

The atmospheric state vector was defined as
X= [a,ﬂ,ﬁ, ps], whereq is the angle of attaclg, is the
angle of sideslipg is the dynamic pressure, apgis

the static pressure. The quantfitis used to denote the
vector of pressure measurements, h@q is the CFD-

based pressure model. Then, the measurement aguatio
was written as

[

(23)



The measurement model was approximated about a
reference value X, using a first-order Taylor series
expansion, given by Eq. 24.

2= h(%)+H (x)fx-x) (24)

where H is the Jacobian matrix of the measurement

model evaluated at the reference condition. The
preceding equation was recast as
A= I-T(x)x (25)

where A =z- FI(Y)+ I—T(T()i This equation takes the
form of a linear regression problem, which was edlv
using the weighted least-squares method to find the
best fit to the data. The solution is given by Bq.2

= (ATRMA)TATR (26)

whereR is the measurement covariance matrix.

Since the original relationship between the
measurements and the states is nonlinear, theiaolut
was iterated until convergence, by successively
replacing x with X. The covariance matrix of the state
estimate error was computed using the relation in
Eq.27.

p=(ATRA)" 27)
To apply the IMU aiding to the least-squares
algorithm, an estimate of the speed of sound was
needed to compute Mach number from the IMU-
derived velocity. Since the algorithm computes a
speed of sound estimate based on the computedylensi
and static pressure, the algorithm was iteratetailp
by updating the speed of sound estimate on eac) pas
based on the derived speed of sound from the prsvio
iteration. For the MEADS reconstruction, the iditia
speed of sound profile was assumed to be 220 m/s,
constant with altitude. Additionally, systematiaas
in the pressure model were estimated using a batch
least-squares fit of a cubic polynomial error mottel
the measured residuals. Additional details on the
MEADS processing algorithm can be found in [12].

4.3 Pre-Flight Uncertainty Analysis

Extensive pre-flight simulations were conducted to
analyze the performance of the MEADS processing
algorithm. These simulation studies included single
variable sensitivity studies, linear covariancelgsia,

Monte Carlo analysis, and scale model flight teptin
ballistic range facilities [14].

An example of the pre-flight uncertainty analysss i
shown in Fig. 1. These results show thes 3-
uncertainties in the aerodynamic state estimatedas
on Monte Carlo statistics with a sample size of 00
cases, and the predicted uncertainties based wstdtee
covariance estimate computed within the MEADS
least-squares processing algorithm. Note that the
MEADS uncertainties were computed from a nominal
simulation run around which the Monte Carlos were
initialized. These results indicate that the pcet
uncertainties based on the least-squares covariance
matrix are a good match to the true statistics ageg
from the Monte Carlo simulation. This result gives
confidence that the uncertainty predictions frone th
MEADS algorithm are accurate.
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Fig 1. Pre-flight MEADS vs Monte Carlo uncertainty
estimates

5. UNCERTAINTY ASSESSMENT RESULTS

The uncertainty estimates from the three reconstmic
methods were compared to assess their respective
accuracies. Each method relied on a differento$et
inputs and their uncertainties reflect the accurate
inputs based on how the reconstructed state
uncertainties were computed - either through
propagation of covariance dynamics or transfornmatio
of input covariance. ldeally, there should exising
region of the uncertainty bounds of each recontitc
that overlap at each time point in the trajectorin
spite of differences in uncertainty between
reconstruction methods, an overlapping region sskgge
that there is some value of the reconstructed sietie

all three methods agree upon. Such a result pesvid
confidence in the reconstruction because the three
semi-independent techniques are effectively offgrin
support towards one another.



Figs. 2 and 3 show the uncertainty in angle ofcatts
estimated by the three methods of reconstructiein.

2 shows the error between the inertial reconstucti
and the aerodatabase and MEADS reconstructions.
The 36 uncertainties are also shown in the figure to
assess the relative performance of the reconsingti
as compared to their uncertainties. Fig. 3 shows a
comparison of the 3- uncertainties of each
reconstruction. Similarly, angle of sideslip uriaerty

is shown in Figs. 4-5.

The three angle of attack reconstructions agreé wit
each other very well, with a maximum difference
between any two reconstructions no greater than two
degrees. The MEADS and inertial reconstructions
agree best, with a maximum difference no greatan th
one degree. Uncertainties bounding angle of ataek
greatest for the aerodatabase reconstruction witts a
value of 2.35 degrees at 600 seconds. Over the
trajectory, this uncertainty grows, reaching a maxn

3-c value of 7.0 degrees at 748.2 seconds. The
estimates of angle of attack uncertainty from the
inertial and MEADS reconstructions are of roughtg t
same order, and are smaller than those of the
aerodatabase reconstruction. For most of the
reconstructed trajectory, the inertial estimates3af
uncertainty are below one degree, with brief segmen
over one degree between 671.4 and 677.9 seconds, as
well as after 741.6 seconds. The MEADSc 3-
uncertainty estimate exceeds one degree after 668.4
seconds and reaches a maximum value of 1.68 degrees
at the end of the reconstruction.
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The three angle of sideslip reconstructions agrith w
each other very well, with a maximum difference
between any two reconstructions no greater than 1.6
degrees. The differences between all three
reconstructions are very similar, and the largest
differences occur between the aerodatabase and
MEADS reconstructions. As with the angle of attack
reconstruction, the uncertainties bounding angle of
sideslip are greatest for the aerodatabase
reconstruction. The initial 8- uncertainty in the
aerodatabase reconstruction is 2.7 degrees, and a
minimum uncertainty of 2.3 degrees occurs at 650.2
seconds. The uncertainty grows after this minimum
value and reaches a maximum of 4.0 degrees by the
end of the reconstruction. The sideslip uncenaint
estimate from the inertial reconstruction is sigaintly
lower than that of the other two reconstruction
methods. An initial value of 8-uncertainty is 0.29
degrees. The uncertainty grows, reaching a vafue o
2.73 degrees by the end of the reconstruction. The
MEADS uncertainty estimate of angle of sidesligslie
in between the uncertainty estimates of the ineatia
aerodatabase reconstructions. @ The MEADS 3-
uncertainty has an initial value of 1.25 degreesro
four times greater than the initial uncertaintysideslip

for the inertial estimate. While there is a large
difference at the beginning of the reconstructitirg
MEADS and inertial uncertainty estimates conveme t
roughly the same value of8@uncertainty by the end of
the reconstruction. The MEADS &-estimate of
sideslip uncertainty is 2.8 degrees at 770 seconds.
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Figs. 6 and 7 show a comparison of the reconstlucte
dynamic pressure uncertainties from the three nastho
The reconstructions are in reasonable agreemetit, wi
no two reconstructions differing by greater tha®el5s
The inertial and MEADS reconstructions are most
similar with maximum differences of roughly four
percent during the trajectory. The aerodatabase
reconstruction deviates furthest from the other two
methods, with maximum differences reaching 10.7%
against the inertial reconstruction and 9.2% agahes
MEADS reconstruction.
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Fig 6. Dynamic pressure difference and uncertainty
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The lowest uncertainties in dynamic pressure aea se
in the MEADS reconstruction, with &-uncertainties
that do not exceed 0.75% of the reconstructed valsie
shown in Fig. 9. This is in stark contrast witte th
inertial uncertainties, which vary between 5% agéol

of the reconstructed value, and the aerodatabase
uncertainties, which vary between 14% and 15% ef th
reconstructed value. The cl-uncertainty estimates
from the inertial and aerodatabase reconstructions
relative to their reconstructed values are showri@s.

8 and 10. As expected, the MEADS pressure pog dat
provides a higher accuracy reconstruction of
parameters related to air data states.
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A comparison of the reconstructed density unceftain
estimates are shown in Figs. 11 and 12. Whereas th
inertial reconstruction relies on a pre-determined
atmosphere model, the MEADS and aerodatabase

reconstructions of density are able to estimatesitien
directly from flight data. Between 620 and 680
seconds, the hypersonic region of flight, the 1aért
reconstruction agrees best with the MEADS
reconstruction of density, with differences no g¢eea
than (roughly) 3%. Beyond 700 seconds, during
supersonic flight, the inertial reconstruction agrbest
with the aerodatabase estimate of density, with
differences approximately on the order of 2% to 4%.

The difference between the MEADS and aerodatabase

reconstructions grows steadily from the beginnihg o
the reconstruction reaching a maximum difference of
10.3%.
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Figure 11. Density difference and uncertainty
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Figure 12. Density uncertainty

A comparison of the 8-density uncertainty estimates
are shown in Fig. 12. Similar to the dynamic puess
uncertainty estimates, the density uncertainties ar
lowest for the MEADS reconstruction algorithm. The
1-6 density uncertainties as a percentage of the
reconstructed value are shown in Figs. 13-15. The
MEADS uncertainties do not exceed 5% of their
reconstructed values over the reconstructed tiaject
This is significantly larger than the MEADS dynamic
pressure uncertainties, most likely due to the \@ny



uncertainty contributions of velocity in computing
dynamic pressure. The aerodatabase and inertial
uncertainty estimates of density are very simiar t
their dynamic pressure uncertainty estimates. & hes
results provide a high level of confidence in the
reconstructions because the uncertainties are small
the three reconstructions agree reasonably well.

131

‘ —Inertial Reconstruction‘

-y
N

-
jry

10F

Density Uncertainty [%]

4 H H H
600 650 700 750
Time [s]

Figure 13. Density uncertainty - inertial reconetion

ar

‘ MEADS Reconstruction‘

3.5

3t

2.5f

2t

1.5

Density Uncertainty [%]

1F

0.5f

0 H H
600 650 700 750
Time [s]

Figure 2. Density uncertainty - MEADS reconstruatio

15.21

— Aerodatabase Reconstruction

15[

-
F
o]
~

Density Uncertainty [%]
-
B (2]

1W.2p i S
14 . + !
600 650 700 750
Time [s]
Figure 3. Density uncertainty - aerodatabase
reconstruction

6. CONCLUSION

Three semi-independent methods were applied to
perform reconstruction of the MSL EDL trajectory.
Each method utilized a different set of inputs to
reconstruct several common parameters. Additignall
the reconstructions provided assessments of the
accuracy of each reconstruction through analysthef
state’s statistical properties. A novel method of
uncertainty estimation was used by the aerodatabase
reconstruction algorithm. This technique perfornaed
transformation of input covariances into output
covariances through linearization of the estimation
equations. Each method of reconstruction and
uncertainty estimation was described and the liagult
uncertainty estimates of reconstructed states were
compared. The results between the three appreache
showed strong agreement, and overlapping unceytaint
bounds, indicating accurate and consistent
reconstruction by all three methods.
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