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Bistatic Radar — Overview 

Turn off modulation	

Slew spacecraft antenna	


Use telecom signal to probe surface	
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Bistatic Radar — Operations 

Considerations	
	

Dynamic Spacecraft Antenna Pointing	


follows specular point	
	

Dual Polarization Receiving	
	

Multiple Frequencies (option)	
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Data Flow 
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Bistatic Radar — Surface Density Estimation 

Forward Scatter = Specular Reflection	

	
Echo Power ! Dielectric Constant	
	
	
	
	
Dielectric Constant ! Surface Density	
	
	
	
	
Polarization Confirms	




Page  6 13 June 2015 IPPW Short Course  

Fresnel Reflection 

 
 
 

RR = (RV + RH)/2 
RL = (RV - RH)/2 

 
Pi = (PTGT/4πrT

2) σi (AR/4πrR
2) 

σi = Ri
2 σ0 

 
Same Radar Equation for both Polarizations — except that Ri is different. 
For simplification, we work with ratio PR/PL rather than absolute PR and PL 

(1) Many common terms drop out 
(2) Avoid most specular vs diffuse questions 

 
 

€ 

VR =
ε cosφ − ε − sin2 φ
ε cosφ + ε − sin2 φ

€ 

HR =
cosφ − ε − sin2 φ
cosφ + ε − sin2 φ
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Circular Power Reflection Coefficients 
RCP, LCP Fresnel Powers for RCP Transmitted 
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Dielectric Constant from Reflectivity 
 Contours of RCP/LCP Ratio versus  ε  and  φ	


+	

RCP = LCP AT BREWSTER	


ANGLE 60° FOR ε = 3	
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Mars Express Example 
(Dielectric Constant ε from RCP/LCP Ratio) 

2006/022 X-BAND ECHO POWERS (DYNAMIC POINTING)
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(14 4-minute average spectra)	


Echo power cross-over	

at Brewster Angle = 62.35°	


RCP	


LCP	
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Bistatic Radar — Vertical Relief (km-scale) 

Echo Doppler Offset = fr – fd	
	

Potentially Sensitive to Δrp (topography)	
	

Only Soviets have Claimed Measurement 	
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Bistatic Radar — Surface Roughness (cm scale) 

S/C Antenna Illuminates Region	
	

Local λ-scale Roughness Disperses Echo	


	
Infer Roughness from Dispersion (Δf)	
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Doppler Observations 

•  Echo separated from direct signal by	

   spacecraft orbital motion (and topography)	

	

•  Echo spread in frequency by roughness 	


Δf = 4(ln 2)1/2(Vζ/λ) cosφ	

   where	

      V = specular point velocity on surface	

      ζ = rms surface slope	

      φ = angle of incidence	

	

• Spacecraft HGA can under-illuminate	

   reflecting region (  in today’s	

   experiments at shorter λ).	

   Then Δf is only a measure 	

   of HGA pattern.	


Δf	
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HALF-POWER ECHO 
BANDWIDTH ~250 Hz 
ζ ~ 0.17°, C ~113K 

BEAMLIMITING 
BEGINS AT ζ~2.5° 

 
NOTE BROADER 
ECHO AT BASE 

φ = 76.21° 
79.7N, 67.9E 

	

ε = 1.76 

 

MEX BSR 2008/185 
Spectrum from Area with Very Low RMS Surface Slope ζ 

Generally, it is easier to derive dielectric 
constant than rms slope ζ because the 

MEX surface echo shape is controlled by 
the HGA illumination pattern.	


	


In especially smooth areas, echo shape is 
controlled by surface texture.	


	


In this example, near Mars’ north pole, 
the surface has only 0.17° rms slope, 

measured at λ = 3.6 cm.  Previously, the 
smoothest surface found by radar was ζ 

~0.25° at λ = 13 cm in Syrtis Major.	
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Mars Express Experiments Completed 
(2004-2012; 8 more experiments in 2014 not shown) 
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More Results 

IPPW Short Course  
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Utopia Planitia: Surface Crust Layer? 
(inferred from εx > εs) 

εx > εs	

3.2   2.3	

3.6   2.4	

3.1   2.8	


N/A	


3.6<εx<3.9	


d	


3.6 ~ d << 13 cm	

gravel layer?	


duricrust?	

λx = 3.6 cm	

λs = 13 cm	
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Mars Express Bistatic Radar 
North Pole Specular Tracks — 2008, Days 185 and 231 

OCCULATION 
EGRESS 

(54°N, 18°E) 

φ = 60°	


END 
(66°N, 225°E) 

231 

185 
OCCULATION 

EGRESS 
(67°N, 59°E) 

END 
(68°N, 219°E) 70°N 

80°N 
φ = 60° 

VERY	

SMOOTH	
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MEX BSR 2008/185 
X-RCP Spectrogram (echo drift removed) 

X-BAND TRANSMITTER 
TURNED ON 18:25 

OCCULTATION  
EGRESS 

18:23 

MEX Tx 
DROPOUT 

18:26:40 
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MEX BSR 2008/185 
X-LCP Spectrogram 
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MEX BSR 2008/185 
Dielectric Constant ε from RCP/LCP Power Ratio 

SAND? 

SNOW? 

λ = 3.6 cm	


λ = 13 cm	


86.8N	

(max)	
80.3N	
73.3N	
 80.1N	
 70.8N	
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New Directions 

IPPW Short Course  
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Uplink Bistatic Radar to Spacecraft 

Bistatic Radar originally envisaged as ‘uplink’	

—transmitter on Earth, receiver on spacecraft —	


up to 30 dB SNR advantage over ‘downlink’	

(mostly from higher Tx power)	


	

First uplink surface observations conducted 	


using Mars Odyssey in 2004	

	


New Horizons will attempt an uplink experiment	

at Pluto in 2015	


Requires RCP and LCP 
receivers on spacecraft	
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Crosslink Bistatic Radar 

Obviates need for large Earth-based antenna, receiver, 	

and/or transmitter; but requires new investment in	

science-quality spacecraft radio instrumentation	


	

Need: two or more spacecraft	


low-noise receiving environment	

dual-polarization tunable receivers	


precision time/frequency references	

high-speed A/D conversion	


on-board processor(?)	

careful planning and synchronization	
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Crosslink Feasibility Test 

 

Post-detection frequency 
residuals of Mars Odyssey 

(ODY) transmissions received 
by Mars Reconnaissance 

Orbiter (MRO) at 437.1 MHz	


Direct Signal	

(ODY-MRO)	


Carom Signal	

(ODY-surface-MRO)	



