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OVERVIEW 

Sami Asmar 
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Density & Gravity 

•  Box on the left has more stuff than one on the right, of the same size 
•  It has higher density (density = mass / volume) 
•  Gravity is an attractive force that is proportional to mass inside objects 
•  For these boxes, the gravity is different because the density is different 
•  Gravity also depends on distance away from the center of mass 

S. Asmar 
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Jupiter:  
Diameter: 139822 km (~ 11 x Earth)  
Mass: 1.8986×1027 kg (~ 317 x Earth) 
Average Density: 1326 kg/m3  
Surface Gravity: ~ 2.4 g (~ 23 m/s2) 

Earth:  
Diameter: 12742 km 
Mass: 5.97219×1024 kg 
Average Density: 5515 kg/m3 (~ 4.2 x Jupiter) 
Surface Gravity: 1 g (9.8 m/s2) 

Planets & Gravity 

•  Jupiter has much more mass than Earth and much more gravity 
•  But a lot less density 

•  At its equator, Jupiter’s surface gravity is only 2.5 times Earth’s surface 
gravity because Jupiter is so big 

•  Dependence on total mass inside the body and the distribution of mass 

S. Asmar 
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Saturn’s density is less than water, so it floats 

S. Asmar 
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Interior Models 

•  Probe inside the planets by determining their gravity fields 

S. Asmar 
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Use Spacecraft to Observe Gravity 

•  Watch the changes in path as a spacecraft orbits around a planet 
•  Speed changes depending upon where it is around the object 
•  Manifested as a Doppler shift in the radio signal 

Less mass 

More mass 

S. Asmar 
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How to Measure Spacecraft Velocity 

•  Receive spacecraft radio signal on Earth 
•  As spacecraft speeds up or slows down, this changes the wavelength 

(frequency) of the received signal 
•  Blue shift: wavelength gets shorter. . . when it travels towards Earth 
•  Red Shift: wavelength gets longer. . . when it travels away from Earth 

Normal!

S. Asmar 
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How to Observe Gravity 

Velocity 

Wavelength 

Direction of spacecraft travel 

Spacecraft speeds up close to a dense object and slows down over a less dense one 

S. Asmar 
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Now Over A Planet 

Velocity 

Wavelength 

Spacecraft speeds up close to a mountain and slows down over a valley 
(before accounting for sub-surface effects) 

Direction of spacecraft travel 

S. Asmar 
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•  Isaac Newton: Motion of satellite around a planet 
is largely due to the gravity field 

•  Deep space mission can investigate the interior 
structure of the target planetary body 

•  Gravity Science (branch of Radio Science) is a 
powerful tool for remote sensing the interior’s 
density variations via precision Doppler tracking 

•  Classical method via a single spacecraft 

•  Newer methods use two 

Gravity and Planetary Interiors 

S. Asmar 
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lat:   , 
long: 

Deep Space Network 

Potential function 
Legendre polynomial 
Spherical harmonic coefficients  
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Gravity from tracking data 

S. Asmar 
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Potential function represented in terms of spherical harmonic expansion 

Gravity coefficients 

Legendre Polynomials 

Gravity Field Representation 

S. Asmar 
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Surface gravity anomalies complete to degree and order 90 with respect to a reference 
ellipsoid (model MRO110B) 
 
Konopliv et al., 2011 

The Gravity Field of Mars 

S. Asmar 
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Tidal observations by 
Cassini gravity team 
 
Titan: Iess et al., 2011 & 2012 
Enceladus: Iess et al., 2014 

Moons of Large Planets 

Models of the interiors 
of the Galilean satellites 
based on magnetic and 
gravity measurements 

 

Titan 

Enceladus 

© 1999 Calvin J. Hamilton 

S. Asmar 
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•  Can apply single-spacecraft method at all solar system bodies except 

•  Earth 

•  The Moon 

•  Earth science community developed spacecraft-to-spacecraft tracking 

•  GRACE mission 
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Direction of travel 

Separation distance between two spacecraft: 
1. Nominal 
2. Increases as leading spacecraft senses positive gravity anomaly due to mountain 
3. Decreases as trailing spacecraft senses positive gravity anomaly due to mountain 

3 2 1

GRACE Mission Concept 

S. Asmar 
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•  Earth’s gravity varies due to 
mountains and valleys as well as 
different density in the materials 
beneath the surface 

•  Bumpiness changes monthly due 
to water movement 

Earth’s Gravity Varies with Time 

•  Monthly surface mass variation in equivalent water 
height - annual wet & dry seasons 

•  Strongest signal over Amazon basin S. Asmar 
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GRAVITY SCIENCE WITH GRAIL: 
GRAVITY RECOVERY & INTERIOR 
LABORATORY 

Case Study 1 

Sami Asmar 
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S-band link Telecom/Nav 

S-band Timing Code 

Ka-band ranging 

X-band Radio Science Beacon 

GRAIL: Mission to the Moon 

S. Asmar 
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x 

Surface and sub-surface effects 

S. Asmar 
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x 

S. Asmar 
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x 

S. Asmar 
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x Solar Radiation Pressure to <0.001 mGal 

S. Asmar 
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x Lunar Infra Red Radiation 

S. Asmar 



    IPPW 2015      27 

crustal density 
crustal thickness 
elastic thickness 

load density 
surface-subsurface load ratio 
phase relationship of loads 

gravity!

topography!

geophysical	
  model !

internal structure 
thermal evolution 

geochemistry 
petrology 
geology 

-300                         +300 mGal 

-9                                +10 km 

Gravity & Topography 

S. Asmar 
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Solid Inner  
Core ? 

Crust 
 
 
 
 
 
Mantle 

Liquid Outer  
Core ? 

Notional View of Lunar Interior 
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Lunar Gravity Map from GRAIL 

Konopliv et al., 2013 & 2014 

S. Asmar 
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GRAVITY SCIENCE WITH MARS 
EXPRESS AT PHOBOS 

Case Study 2 

Tom Andert 
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Phobos 

•  DSN-Mars Express radio science measurements 
•  Determined mass and bulk density 

rbulk = 1862 ± 20 kg/m3 
•  Bulk density lower than solid bodies 
•  High porosity 
•  Phobos re-accreted in place!(?) 

T. Andert 
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•  Gravity coefficients of degree 1 defines the offset between the 
coordinate system and the center of the mass of the body 

​𝐶↓10 = ​Δ𝑧/​𝑅↓0      ⇒Δ𝑧= ​𝐶↓10 ⋅ ​𝑅↓0  
​𝐶↓11 = ​Δ𝑥/​𝑅↓0      ⇒Δ𝑥= ​𝐶↓11 ⋅ ​𝑅↓0  
​𝑆↓11 = ​Δ𝑦/​𝑅↓0      ⇒Δ𝑦= ​𝑆↓11 ⋅ ​𝑅↓0  
•  C21 and S21vanish as long as the z-axis is aligned with the main 

axis of inertia 
⇒ Some coefficients vanish as a consequence of an appropriate 
choice of the coordinate system 
•  All Sn0 are zero by definition 
•  C20 represents the flattening of the body 
 

Special Spherical Harmonic Coefficients 

T. Andert 
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Spherical vs. Ellipsoidal Coordinates 

vs. 

T. Andert 



    IPPW 2015      34 

Gravity Potential in Ellipsoidal Coordinates 

T. Andert 
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http://www.esa.int/SPECIALS/Mars_Express/ 

Mars Express is the first spacecraft since nearly 20 years which is able to perform 
close flybys at the Mars moon Phobos. So far, four flybys were performed: 

•  23.03.2006 at 460 km 

  ⇒ GM estimate  

•  17.07.2008 at 275 km 

 ⇒ GM estimate 

(Andert et al., 2010) 

•  03.03.2010 at 77 km 

  ⇒ C20 estimate 

(Pätzold and Andert et al., 2014) 

•  29.12.2013 at 58 km 

 ⇒ C20  and C22  estimate 

Phobos Gravity Measurement 

T. Andert 
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Acceleration on the SC 

Acceleration by  
the central body,  
for example Mars  
gravity field (n = 110) 

Acceleration caused by  
the third body,  
for example Phobos 

Third Body Perturbations 

T. Andert 
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Phobos 

Mars Ionosphere 

Mars Neutral Atmosphere 

Phobos Flyby, Dec. 2013, @ 58 km 

T. Andert 
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Porosity and Water ice content from gravity 
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GRAVITY SCIENCE WITH ROSETTA 

Case Study 3 

Tom Andert 
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•  Launch of Rosetta to comet 67P/Churyumov-Gerasimenko: 2 March 2004 (1) 
•  1st Earth gravity assist: 4 March 2005 (2) 
•  Mars gravity assist: 25 February 2007 (3) 
•  2nd Earth gravity assist: 13 November 2007 (4) 
•  Asteroid Steins flyby: 5 September 2008 (5) 
•  3rd  Earth gravity assist: 13 November 2009 (6) 
•  Asteroid Lutetia flyby: 10 July 2010 (7) 
•  Enter deep space hibernation: 8 June 2011 
•  Exit deep space hibernation: 20 January 2014 
•  Major comet rendezvous manoeuvre: May 2014 (8) 
•  Arrive at comet: 6 August 2014 
•  Philae lander delivery: 12 November 2014 (9) 
•  Perihelion passage (Closest approach to Sun): 13 August 2015 
•  Mission end: 31 December 2015 

Rosetta’s Journey 

T. Andert 
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The successful landing of Philae took place on  
12 November 2014 after three touchdowns 
Philae completed its primary science mission after ~ 57 
hours on Comet 67P/Churyumov–Gerasimenko 

Credit:	
  ESA	
  and	
  OSIRIS	
  Team	
  

Phillae Landing 

T. Andert 
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 Lander Delivery 

 Start of bound  
orbits (30 km) 

Pyramid Trajectories 

Distance from Rosetta to Comet 
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•  Comet as central body treated (GM and gravity coefficients) 

•  Comet ephemerides according to latest orbit file from FD 

•  Sun and planets treated as point masses (Folkner et al. 2008)  

•  J2 of Sun  

•  Sun and Planet ephemeris from JPL ephemerides DE423, Folkner et al. 2008 

•  Solar Radiation Pressure (macro model for ROS spacecraft)  
•  Outgassing is modeled using of Rosina COPS data (density and the total 

pressure  ⇒ NG gas velocity) 

Force Model 

T. Andert 
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7.9.2014 – 10.9.2014 

Time since 18:28 UT on 7.9.2014 (hours) 
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Nucleus mass determination 
September 2014, 30 km bound orbit 

T. Andert 


