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Radio Signals: Cell Phones to Deep Space

International Telecommunications Union is UN treaty organization
charged with maintaining law and order in the use of the
electromagnetic spectrum

Communications bands categorized by Near Earth & Deep Space
— Propagation effects (effect of intervening media)
— Communications performance (number of bits)
— Evolving technologies (miniaturizing, power consumption)
Three bands currently used by Deep Space network (S, X, & Ka)
— S-band uplink in increasing conflict with cell phone usage
— UHF from probe proximity links

THE ELECTROMAGNETIC SPECTRUM

GAMMA RAYS X-RAYS uv VISIBLE  INFRARED

WAVELENGTH 104A 10°A 1A 100 A 1um 0.1 mm 1cm 1m 100 m 10km  10°km  10%km  107km

FREQUENCY 10" GHz 10" GHz 10" GHz 10°GHz 10° GHz 10° GHz 100 GHz 1 GHz 10 MHz 100 kHz 1 kHz 10Hz 0.1 Hz

WAVELENGTH x FREQUENCY = SPEED OF LIGHT (299,792 km/s)
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Spacecraft Tracking Data

Provide spacecraft position and velocity
— Navigators solve current and predicts future state vector

Ranging — Distance to s/c (line of sight)
Doppler — Rate of change in s/c position
VLBI - Spacecraft angular position

Radio-metric Data: Measurements using the radio signal and its variations.
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Ranging

Range is the distance between ground station and spacecraft
— Measured as round-trip light time (RTLT)
— Distance = (RTLT/2) * light speed

Methods
— Tone: set of frequencies

— Pseudo Noise (PN): sequence of bits modulated
on signal

Accuracy at X-band: better than one meter across
solar system
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Doppler Effect

An observed/perceived change in the
frequency of a radio wave due to the
relative velocity between transmitter
and receiver

Doppler is range rate

The Doppler Effect changes the
observed frequency for wave sources
in motion

— Approaching sources appear to
transmit higher frequencies
— blue shift

— Receding sources appear to
transmit lower frequencies
— red shift

Measuring the radio frequency from
spacecraft allows us to determine the
relative line-of-sight velocity between
spacecraft and tracking station
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Waves

Wave: energy moving through a medium

Water waves: energy moves through water E

— Place a small piece of paper in a tub of
water at one end. Make a wave at the
other end. Note the wave propagates
through the water, but the paper will bob
up and down

Sound: energy moves through air and matter

Earthquakes: seismic energy moves through
matter

Electromagnetic: energy moves through a
vacuum and some matter

'\ Wavelength, A

M

Amplitude

®CCRS /CCT
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Electromagnetic Wave Polarization

The polarization of a wave is determined by the orientation of the signal’ s

Electrical field relative to the propagation vector of the wave

Selection for a specific satellite antenna is based on mission design requirements

e When the electric field oscillates in a plane
ML, ] ]f . V perpendicular to the propagation vector, the
" ﬂ ) lll signal is said to be linearly polarized.

When the electric field oscillates around the
. . . electric field

propagation vector (oscillating through both

planes in a corkscrew effect), the signal is antenna

circularly polarized.
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EM Wave Communication

Spacecraft communications are carried
on electromagnetic waves that travel
between ground facilities and satellites
in space. These electromagnetic waves
travel at the speed of light (3x108 m/s
through free space).

Electromagnetic waves used for spacecraft
communication are generally cm or mm in
length. The wave shown here is 3.6 cm in
length — the wavelength of a 8.4 GHz signal.
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Signals in Time & Frequency

Electrical communications signals consist of time varying
voltage described in the time domain

A signal’s frequency domain description is its spectrum
Spectral concepts describe a signal by its average power or
energy content at various frequencies

Spectra illustrate how much of the electromagnetic bandwidth
the signal occupies
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Interaction Between Waves & Media

Space allows electromagnetic waves to travel through it
Earth’ s atmosphere has different effects on different wavelengths
Frequency band chosen for communication through the atmosphere

THE ELECTRO

MAGNETIC SPECTRUM
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1) Microwaves pierce through fog and rain (greater signal loss at higher frequencies).
2) Microwaves from nature are very weak and do not cause much interference.
3) Microwave signals are easy to generate and to detect.
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Commonly Used Communication Bands

UHF-band (MHz)

S-band (MHz)

X-band (MHz)

. . Near Near Near Near Near
S/S Link  S/S Link
/S Lin /S Lin Earth Earth Earth Earth Earth
T [ T
— 401 420 2025-2110 | 5490 [[2200-2290 | 5599. 7145- | 7190- || 8025- |8400-| 8450
FWD - TDRS 2120 RTN - TDRS 2300 7190 7235 8400 8450 | 8500
Astronaut EVA Deep Deep Deep Deep
Space Space Space Space
Ku-band (GHz) Ka-band (GHz)
Near Earth Near Earth
Near Earth Near Earth Near Earth (Lunar) (Lunar)
' ! | 255-270 | t } t
13.4-14.2
o o R S P
RTN - TDRS ) : : ’
Deep Space Deep Space
l -Downlink (Space -Uplink  (Earth
S. Asmar IPPW 2015 11



Noise

* Noise is additional “signal” not corresponding to i

* Introduces changes in ideal free-space signal; may lead to incorrect
interpretation of information at the received signal destination

— Signal noise
« Amplitude noise — error in the magnitude of a signal
 Phase noise — error in the frequency / phase modulation
— System Noise
« Component passive noise (heat)
« Component active noise (amplifiers, mixers, etc...)
— Environmental Noise
« Atmospheric ionospheric or precipitation
« Solar or Galactic
 Radio Frequency Interference (RFI) sources on Earth
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Linear and Non-Linear Scales

1 10 100 1000 10,000 Non- Llnfaar- each segment is a multiple of
the previous segment
i i i i I i i i i
1 2 3 4 5 6 7 8 9
Linear- each segment is equal |

« Compare items with large values in comparison with each other
— Hearing — measured in dB’s
— Earthquakes — measured on the Richter magnitude
— Solar system on a single page — distance in a power ratio

A Gain=b dB

Loss = x dB A ke y‘
Total Gain=a+b+c—-x-ydB
% | Loss =y dB Can now simply add dBs

Gain=adB

Gain=cdB

S.Asmar IPPW 2015 14



deciBels (dB)

RF Signal Strength, RF gains and losses are typically expressed

in a unit referred to as a decibel (dB).

e Quick Refresher on Logarithms

Decibel = One-Tenth of a Bel

A Bel is the logarithm (base 10) of the
ratio between two values (e.g.,
power, current, voltage).

Operation is addition instead of
multiplication.

To compute decibels using a power
ratio, the basic formula is:

— Decibels (dB) = 10 x log,,(P2/P1)

— The log,, of a number is the
exponent that indicates the power
to which the number 10 is raised to
produce a given number.

— So:
e Log,,(2)=0.3
e Log,,(4)=0.6
e Log,,(8)=0.9
e Log,,(10)=1
* Log,, (100) =2
e Log,,(1,000) =3
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The Start of Radio Science

It became apparent with early missions
that occultations by planetary
atmospheres would affect the quality of
radio communications

One person’s noise is another’s data

Study the atmospheric properties

— And other aspects of planetary
science, solar science, and
fundamental physics

A recognized field of solar system
exploration with instrument distributed
between spacecraft & ground stations

S. Asmar IPPW 2015
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Occultation by the atmosphere of the Sun
¥,

Spacecraft ;fa&

Occultation by the atmosphere of Mars

asymptotes

Magnetosphere

/

lonosphere t
]

Earth
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Radio Atmospheric Occultation Methodology

Phase ==> length ==> refractive angle ==> refractivity ==>
number density ==>column pressure ==> temperature

=l
E
.
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Radio Atmospheric Occultation Formulations

Two frequencies are needed to separate dispersive (plasma) from
non-dispersive effects (orbit, neutral atmosphere, systemic errors, ...)

40.3(m’s )N,
Refraction index of plasma n=1- f2
ds S 40 3
Group/phase change Tapn =1 ==
Var/ ph C
Received phase Ou(t) =27 f |t S(t) 403 1)
cf;
Measured frequency at 1 d 6’ 40.3 :
ground station S r(t) = 5 == =/ > 1(1)
JU ch
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Straight Line Doppler Effect

Compare to effect without atmosphere to derive frequency Residuals
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Valid in an inertial (barycentric) system
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PRESSURE, mbar

Atmospheres of Giant Planets
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Temperature profiles for the giant planets derived from radio
occultation data acquired with the Voyager spacecraft (from Lindal, 1992)

Occultations of

Voyager 2 by
outer planets
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Atmosphere of Mars from MGS Occultations

MGS Radio Science / Temperature (K) {66°N } Ls=75"
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Doppler Observable

WANT Vg,
MEASURE V, + 8V

op <100 wsec
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Radio Science Experiment Types

Propagation

— Study media

— Remove effects of forces
Gravitation

— Study forces

— Remove effects of media

Time Share Example

Mars Global Surveyor Radio Science
Team conducted both types of
experiments back-to-back every orbit for
thousands of orbits: Propagation to
study the atmosphere and Gravitation to
study the interior

OCCULTATION
EXIT

™

OCCULTATION
ENTRANCE

NASA JPL

Stanford GSFC CNES

BEGIN TWO-WAY TRACKING

END

USE ONE-WAY FOR
ATMOSPHERE
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BEGIN £ — i,
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USE TWO-WAY
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—
TO EARTH

MARS OBSERVER
ORBIT
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ATMOSPHERE
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END TWO-WAY TRACKING b
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Radio Science Investigations

Utilize the telecommunication links between spacecraft and
Earth to examine changes in the phase/frequency, amplitude,
and polarization of radio signals to investigate:

— Planetary atmospheres
— Planetary rings

— Planetary surfaces

— Planetary interiors

— Solar corona and wind
— Comet mass flux

— Fundamental Physics

S. Asmar IPPW 2015
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Definitions

 Downlink bands (frequencies and wavelengths):

— S-band: ~2.3 GHz ~13 cm

— X-band: ~8.4 GHz ~3.6 cm

— K,-band: ~32 GHz ~1cm
* Uplink frequencies derived via transponder ratio
 Relation between bands key to dispersive relations

Table 3. Channel frequency ratios

Table 1. Spacecraft Transponder Turnaround Ratiost

Uplink Downlink Ratio (downlink/uplink)
Band pair Channel f::eq uency S S 240/221
ratio S X 880/221
S Ka 15.071 - 15.235*
2110-2120 MHz, 221 X s 240/749
2290-2300 MHz 240 X X 880/749
X Ky 4.4506 — 4.4923*
7145-7190 MHz, 22 Ka s 0.066959 — 0.066282*
8400-8450 MHz 880 ‘. < PP Eva—
2290‘2 300 B‘Hz' 3 Ky Ky 0.92982 - 0.93084*
8400-8450 MHz 11
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Signal Modes

« Coherency Mode
— One-way: signal referenced to source onboard spacecraft

— Two-way: downlink coherent with uplink signal
— Three-way: uplink and downlink at different stations

— Four-way: Sometimes used for relay satellites

 Reception mode
— Closed-loop: find, lock-on, and track received signal

— Open-loop: down-convert and record in pre-selected
bandwidth using a prediction of signal profile
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Radio Occultations

« Study properties of planetary media along propagation path

— Atmosphere: temperature-pressure profile

— lonosphere: electron density

— Rings: particle structure and size distribution

— Byproducts: planetary shapes
« Observables:

— Amplitude and phase

* Refraction

« Scattering
« Edge diffraction
* Multi-path

Ring Occultation
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Occultation Experiment Requirements

Stable pointing of spacecraft antenna to Earth

— Possibly requires limb-tracking maneuver
Optimum signal-to-noise ratio

— ldeally turn off telemetry modulation
One-way downlink referenced to an Ultra Stable Oscillator
Open-loop Radio Science Receiver at Deep Space Network
Optimized pointing of ground station

— Possibly blind pointing Limb-Tracking

— Sometimes fixing sub-reflector @
Avoid low station elevation angles
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Three Cassini Signhals Occulted by Titan
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Saturn’s Rings In the Cassini Era
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Solar Corona and Solar Wind

Occultation by Sun during conjunction periods

— Derive electron density profiles

— Deduce speeds of winds and coronal mass ejections

— Investigate magnetic field via Faraday rotation
Observables:

— Frequency scattering: spectral broadening

— Range: columnar-charged particles effect on group velocity

— Doppler: fluctuations function of integrated electron density
Configuration:

— Two-way link for uplink carrier modulated with range code

— Multiple downlink frequencies (dispersive medium)

— Open-loop receiver supplementing tracking receiver

S. Asmar IPPW 2015
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Gravity and Planetary Interiors

@ \\
Determine the mass and mass distribution

— GM of body or system (planet + satellites) oy
— Gravity field: higher order expansion of mass distribution
Constrain models of internal structure
— Examples: ocean on Europa
Improve orbits and ephemerides
Observables:
— Doppler and range: precise measurement of relative motion
» Doppler accuracy ~ 0.03 mm/s at X, few microns/s at Ka-band
 Ranging accuracy to ~ 1 meter
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Gravity Experiment Requirements

Two-way links when possible
— Superior stability of ground clocks

Minimized non-gravitational
accelerations

— Reaction wheels versus thrusters
— Antennas on a long boom
— Fuel sloshing

Tracking receiver: Doppler and

ranging

— Open-loop receiver fill in data gaps
when high signal dynamics

Higher frequencies and dual links to
reduce noise
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Latitude (degree)

The Gravity Field of Mars

Longitude (degree)

Surface gravity anomalies complete to degree and order 90 with respect to a
reference ellipsoid (model MRO110B)

Konopliv et al., 2011
S. Asmar
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Moons of Large Planets

Models of the
interiors of the
——7 Galilean satellites
based on magnetic

Enceladus

Tidal observations by

Cassini gravity team Ganymede  Callisto

Titan: less et al., 2011 & 2012
Enceladus: less et al., 2014

© 1999 Calvin J. Hamilton
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Juno To Reveal Jupiter ‘s Interior Structure

Juno Gravity Science:

Precise measurement of
spacecraft motion measures
gravity field

Close-in Juno polar orbit
maximizes sensitivity to
gravity

Distribution of mass reveals
core and deep structure

Higher degree harmonics
reveal convective motion in
deep atmosphere

S. Asmar IPPW 2015
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Earth’s Gravity Varies with Time

- Earth’s gravity varies due to
mountains and valleys as well
as different density in the
materials beneath the surface

 Bumpiness changes monthly
due to water movement

s ee— |
030 -015 0.00 0.15 0.30

Monthly surface mass variation in equivalent water
height - annual wet & dry seasons

Strongest signal over Amazon basin

S. Asmar
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Latitude (degqg)

GRAIL Reveals Lunar Interior Structure

50 100 150

-100 -50 o]
Longitude (deg) S. Asmar
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Surface Characteristics

« Study properties of planetary surfaces
— Roughness & dielectric constant
 Observables:

— Ratio of received energy in same
and opposite polarizations

« Configuration:

— Point to planet’ s surface and
receive echo on Earth

S/C HGA

S/X RCP
S/X RCP
SIX LCP

Direct Carrier

. . -sap Surface Ech
— Record both polarizations o
— Special noise calibration A
rocedures \
p . s I MVWWM WV/ \Nwmww*””‘/m‘w %
— Open-loop receivers / \\ |
— One-way downlink fm e W i me e o we w0

Source: R.A. Simpson & M. Patzold
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Doppler Wind Experiments

Deduce wind speed and direction as probe
descends into atmosphere of planet or satellite

— Huygens Probe at Titan

— Galileo Probe into Jupiter

— Russian probes at Venus
Configuration:

— Stable oscillators on probe and orbiter
— Spacecraft-to-spacecraft links

— Sometimes receive signal on Earth

Huygens DWE failed but saved by recording
at Green Bank and Parkes radio telescopes

— Prograde zonal winds above boundary layer
— Low-velocity layer between 60-80 km
— Considerable turbulence above 100 km
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Relativistic Time Delay

Determine Post-Newtonian Parameters

— Bending due to Sun’s gravitational potential
— Formulated in General Theory of Relativity natul:e
— Parameter describes curvature of space-time Bl
Observe time delay from frequency shift 4
Cassini Solar Conjunction experiment in 2002
— Gamma = 1+(2.1+2.3)x10-°

Multiple links to calibrate interplanetary plasma

Water vapor radiometer to calibrate troposphere

Bertotti et al. 2003

Precise antenna pointing
Open-loop and tracking receivers
Quiet Spacecraft: reaction wheels
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Search for Gravitational Waves

Search for gravitational waves crossing the solar system
— Propagating, polarized gravitational field
* Predicted by all relativistic theories of gravity
« Changes distance between separated test masses
« Extremely weak; only detectable from astrophysical sources
— Low frequency waves
* Doppler method sensitive in milli-hertz range
Observables:
— Relative distance between spacecraft and ground station
» Typically 40 days and 40 nights during solar oppositions

S. Asmar IPPW 2015
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Largest Instrument in Solar System

- Ka-band Transponder
* X-band Transponder

X-band Uplink
Ka-band Uplink

Interplapetary Plasma
+ o+
- +

Z St _
e

i —

lonosphere
Troposphere

- X-band Downlink
(ref. X-band uplink)

Ka-band Downlink
(ref. Ka-band uplink)

» Transmitter for X and Ka band

» Receivers for X and Ka band

» Advanced Water Vapor Radiometer
 Pointing at Ka band

» Frequency and Timing Reference
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Would not be able to do it without DSN

ol

R

Composite image to show relative size of 70-meter diameter station S. Asmar IPPW 2015

45



Cassini Meets Marconi

Uplink Possibilities

X-band ~ 7.9 GHz
K,-band ~ 34 GHz

Downlink Possibilities

S-band ~ 2.3 GHz
X-band ~ 8.4 GHz
K,-band ~ 32 GHz

OPEN LOOP
RCVR/RECORDER
SUBSYSTEM

Q

TRANSMITTER

CLOSED LOOP

» RCVR/RECORDER

SUBSYSTEM

DSS

Q

uso

K,-BAND
SELECT

TRANSLATOR | TRANSMITTERS

ENABLE

NO

— K,-BAND

INHIBIT

>

>

YES

— S-BAND

OSCILLATOR

AUXILIARY

RCVR
IN LOCK?

X-BAND

X-BAND
RECEIVER

CASSINI

uso

HGA Gain ~ 47 dBi
Power ~20 W
EIRP ~ 88.6 dBm

FREQUENCY
AND TIMING
SUBSYSTEM

Digital communication: BPSK

Bit rates: 5 bps to 248 kbps
Phase modulated onto carrier
or subcarriers of 360 or 22.5 kHz
Reed-Solomon outer code
Convolutional inner code
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