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The Groza 2 experiment aboard the landing craft comprised a microphone and
appropriate electronic circuitry for measuring acoustic noise both along the descent
path and on the surface of the planet. The electromagnet-type microphone remained
operational at temperatures up to 800 K and pressures up to 100 bar. The microphone
accommodated a 2-kHz frequency band, from 400 to 2500 Hz, with peak sensitivity
near 1700 Hz (under standard conditions).

Descent signals attributed to aeroacoustic noise.



Acoustic measurements of the wind velocity at the Venera 73 and
Venera 14 landing sites

L. V. Ksanfomaliti, N. V. Goroshkova, M. K. Naraeva, A. P. Suvorov, V. K. Khondyrev,
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{Submitted May 17, 1982
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FIG. 1. Acoustic noise recorded by the Venera 14 lander on the surface of
Venus, March 5, 1982. Vertical axis, output signal U (the full scale corre-
sponds to the range from 55 to 82 dB; horizontal axis, elapsed time after
landing. The heavy bar indicates the period when the spacecraft systems
were operating. The arrows indicate noise associated with equipment opera-
tion. Presumably the signal from t = 180 to 240 sec represents wind noise

in the microphone armature.



By interpreting the acoustic noise on the Venus surface as wind noise in the
microphone armature, estimated wind velocities of 0.35-0.57 m/sec are obtained,
In agreement with earlier measurements on other spacecratft. It is noted that
these values are also consistent with the observed drift of fine soil particles
across the surface of the spacecraft landing ring.
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FIG. 2. Output signal U as a function of the wind velocity Vy on Venus and
Vg on the earth when the microphone is employed as an anemometer. The

angle o specifies the direction of the wind relative to the microphone dia-

phragm.
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Figure 18.13 Mars Polar Lander.

Figure from Ball et al., Planetary Landers and
Entry Probes, CUP, 2007
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Signal more or less constant during descent. Why ?

Sound level corresponds to fluctuations in pressure sensed at
microphone - forced by dynamic pressure during descent. Under a
given parachute in steady descent dynamic pressure is simply weight
per unit area - roughly constant (g, Re, M etc....)

Possible acoustic impedance effect at beginning ?
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ACC-E

API-V: speed of sound in media

API-S: downward-looking sonar DEN: density of liquid

THP: thermal properties of media ACC-E: landing impact force sensor
PER: electrical permittivity / ( ACC-I: acceleration on impact
conductivityREF: refractive index of TIL: angle of probe ) - on electronics

liquid box



Aeroacoustic noise

peaks at ~D/V _ _
Increasing attenuation at

high frequencies

Optimum sounder e
frequency ~20kHz ,

D _Huygens~1m
V~5m/s
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Figure 1| Acoustic sonar (API-5) surface echoes. Note that the larger
signals to the left of the plot are the result of the sensor ringing from the send
pulse intruding into the receive time window. The inset is a zoom on the final
APL-S surface detection from 14.4m altitude {at the time of pulse
transmission). A speed of sound measurement of 191.9 + 1.8ms ' from
the 55P Acoustic Velocity (AP1-V) sensors near the surface is used to convert
ranging time delay into altitude.

Zarnecki et al., Nature, 2005



SSP API-S as Weather 'Radar

Drizzle Heavy Rain
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From Svedhem et al., Planetary Probe Atmospheric Entry and Descent Trajectory
Analysis and Science, Lisbon, PT 2002 (aka IPPW-1) Proceedings ESA SP-544



Search for atmospheric backscatter (turbulence,
precipitation). 'Jammed' by external noise during
two major episodes of descent
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Pump Speed [rpm)

Descent mode observations
dominated by noise from ACP pump
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Tx ringing was noted to increase after launch: transducer
elements shifted ?

Signal in first bin (ringing) declines with time - better coupling of
energy into denser atmosphere?
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Odd character 1000-2500s Period of most rapid external
temperature change... (although other things going on too..)

Temperature (K)




'‘base level' of signal in last bin dominated by ACP noise, but
non-monotonic trend in the thee 'quiet' regions - 3700-4500s
region has much more echo power than early and late phases
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Descent motions of the Huygens probe as measured by the Surface
Science Package (SSP): Turbulent evidence for a cloud layer
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Not obviously voltage noise - likely to be real movement/stress
on transducer. But is it echo from cloud, echo from turbulent
eddies, or mechanical noise on the sensor ?




Histogram of signal voltage vs time bin
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Signals as likely to occur in distant time bins as they are in nearby bins.
Appears to reject the hypothesis that most signals are echoes.

A real environmental signal (but peak in acoustic data cut off by noise before

peak in Tilt signatures reached) but not echoes - structural creaking excited
by turbulence?



Use microphone as indicator of flow separation ?

INSTITUTE 0F PHYSICS PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY

Meas. Sci. Technol. 16 (2005) 738-748 doi: 10 1T0RRDGIT- 02331631017

Flight and attitude dynamics
measurements of an instrumented Frisbee
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Acoustical Measurements are challenging from a
rapidly moving vehicle.

» Perception of a parachute-borne probe as a gently
descending object is wrong. Fast and noisy

 Balloon-drop or similar testing should have been carried out
 ACP pump was identified as a potential noise source during
development - why was it a problem for SSP? (and why is
signhature not obvious on HASI - structurally conducted rather
than acoustically radiated ?)

e Science impact of HASI ACU has been modest, but
outreach value not insignificant

« Zero offset - important in measuring low surface winds



V/ PRF

Being sure about a few
detections is better than
having many possibles.

Want multiple echoes
(>3) of same reflecting
structure (i.e. high PRF,;
though NB range
ambiguity is a challenge
for 'relativistic' regime
(V~C)

Adapt sampling
strategy to descent rate
- burst mode



Acoustic measurements too ‘novel’, too nonspecific
to merit dedicated acoustic instrument ?

Need to piggyback microphone on ‘package’
iInstruments like SSP or atmospheric structure,
and/or invoke its outreach appeal.

(NB speed of sound a useful measure of methane
humidity on Titan; also diagnostic of ortho:para
hydrogen ratio in giant planet atmospheres.
Acoustic anemometers are also a promising
technique)



Sodar, methane humidity
and anemometer on a
Titan Montgolfiere ?

Tibor Balint



Acoustic instrumentation on a Titan lander - methane humidity, anemometry, detection
of saltation or waves (dunes v liquid) Infrasound from bolides, cracks from tidal
stresses. Booming dunes? Also engineering/outreach of mechanism operation
(doors, pumps, sampling arm, Titan Bumblebee UAV takeooft..)
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Tucson, September 2007

Linear array of 20 stations deployed
E-W (PICAXE 18X datalogger)

Set to record 1 hour of 1/s 1-byte
data of pressure, temperature, light,
microphone (numerically
differenced-summed)

Encountered large dust devil after
~30 minutes
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