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Ablative Thermal Protection Systems (TPS)

Start of space flight — until today All European missions:
High-speed reentries ablative heat shields

Apollo 10 capsule Soyuz capsule Atm. Reentry Demonstrator
(May 26, 1969) (1967-today) (1998)
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Ablative Thermal Protection Systems (TPS)

Start of space flight — until today Future: Sample returns
High-speed reentries High-speed reentries

Mars Science Laboratory (2012)
Courtesy: NASA

Apollo 10 capsule Soyuz capsule
(May 26, 1969) (1967-today)
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New Porous, Lightweight Ablators

® New low weight materials (PICA, ASTERM) [2, 3]

® New missions (Asteroid / Mars sample return)

Stardust probe (2006, 12.9 km/s, [1])



New Porous, Lightweight Ablators

® New low weight materials (PICA, ASTERM) [2, 3]

® New missions (Asteroid / Mars sample return)

Modeling tools inherited from Apollo program
(1960s) [4]

Stardst probe (2006, 12.9 km/s, [1])

— new material response models [5]

— qualification of materials & validation of models required [6]
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Complex Multiphysics - Multiscale Problem

Radiative and Pyrolysis of phenolic resin
heating CgH;—OH (>200°C)
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Pyrolysis of phenolic resin

Ablation

Chemical mechanisms

oxidation (CO, CO,),
nitridation (CN)

Phase changes

melting,
sublimation (C, C,, C;)

Mechanical removal

spallation, shear stress,
melt removal
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Complex Multiphysics - Multiscale Problem
Research Strategy and Objectives

\

VKI: Analysis in High-Enthalpy Plasma Flows VUB: Multiscale Characterization

— Gas phase: O pyrolysis gas chemistry

O transport phenomena & radiation in the boundary layer

— Material: O thermal performance and internal degradation

@ char ablation zone and degradation of carbon fibers
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Research Frame and Goals

= Methodology to characterize material response & gas-gas / gas-surface
interaction of innovative ablators

= Model validation and flight extrapolation
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= Combining basic ingredients for prediction in aerospace science
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Local Heat Transfer Simulation (LHTS)

— Plasmatron design based on LHTS methodology
— Well characterized plasma flow through numerical-experimental procedure

Stgn.pt. heat flux similarity[7]:

Relaxation | Real flight situation Hy = H,
zone exp,
Pf = Pezxp,
Aerospace Bf = Bewp, B = (dU/dzx)e
N y vehicle nose

N y;

Shock ,

7

M>>1
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1.2 MW Inductively Coupled Plasmatron

Plasmatron facility and artistic impression of plasma torch

® Originally designed for Hermes project
(Ceramic Matrix Composites (CMC) — ablation)

Gas: Air, N,, CO,, Ar
® Power: 1.2 MW (most powerful ICP in the world)

Heat-flux: up to 10 MW /m? (superorbital re-entry)

® Pressure: 10 mbar - 1atm
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1.2 MW Inductively Coupled Plasmatron

pitot probe “

water cooling system water-cooled ‘ . e
calorimeter Ve

Plasmatron test chamber showing experimental setup and torch exit

® Originally designed for Hermes project
(Ceramic Matrix Composites (CMC) — ablation)

Gas: Air, N,, CO,, Ar
Power: 1.2 MW (most powerful ICP in the world)
Heat-flux: up to 10 MW /m? (superorbital re-entry)

Pressure: 10 mbar - 1atm
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1.2 MW Inductively Coupled Plasmatron

movie loading...



Experimental Techniques for Ablation Characterization

® Radiometry
High speed surface temperatures &
camera ...

emissivity

Function generator

2-color pyrometer

® Thermocouples
internal temperature histories

test sample
exhaust & \ \ ® High-speed-camera
heat H . . . .
exchanger — In-situ recession ana|y5|s
plasma torch . . i .
. 000 — in-situ determination of
reactive .
spectrometer probing
locations
light collection
HR-4000 spectrometer » system (lens & ™ Optical emission Spectroscopy
mirrors) -
temporally and spatially resolved
\ \ optical radiation profiles in the boundary
1l

fibre ends Iayer

— chemical composition
— temperature estimation
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Experimental Techniques for Ablation Characterization

® Radiometry
surface temperatures &
emissivity

® Thermocouples
internal temperature histories

® High-speed-camera

® Optical emission spectroscopy
temporally and spatially resolved
radiation profiles in the boundary




Materials of Investigation

Carbon fiber preform (Mersen Scotland Holytown Ltd.)

® chopped carbon fibers, fully carbonized ’ no phenol content

® density: 180-210 kg/m3, porosity: 90%

AQ61 (EADS Astrium ST)

® low density carbon-phenolic

® made of short carbon fibers impregnated | with phenolic resin

— compacted & pyrolysed

® |ow resin content
ASTERM (EADS Astrium ST)

® low density carbon-phenolic

® rigid graphite felt impregnated ‘ with phenolic resin

— polymerization

® precursor similar to carbon fiber reform
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Contaminated Boundary Layer

Emission spectra of carbon—phenolic ablation in air and nitrogen plasma
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Detection of contamination products originating from phenol
(CgHs—OH)

& pyrolysis = C, C,, CH, NH, OH
# ablation = C, C,, CN
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CN Spatial Radiation Profiles in Boundary Layer

Integration range

Spectrometer 1

Spectrometey

€ [W/(mz.sr.nm)]

370 375 380 385 390
wavelength [nm]
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CN Spatial Radiation Profiles in Boundary Layer

Integration range
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CN Spatial Radiation Profiles in Boundary Layer

Integration range

€ Spectrometer 1
= 200
2 Spectrometey ( ) 390nm
o
E 100 I = / e(A)dA (1)
= 370nm
© 0
370 375 380 385 390
wavelength [nm]
Carbon Preform (no phenol) ASTERM (phenolic impregnated)
= S 1 = Spect ter 1
Nug 400 pectrometer N(Q G pectrometer
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0 0
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We are interested in temperature and concentration profiles in the boundary layer
— molecular radiative signature of CN violet system
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CN Radiation Simulation for Temperature Estimation

ps = 15mbar, Ts =2130K ps =100mbar, Ts =2097K
1 - - - - - 1 — - - - -
Experimental spectrum v'=3 Experimental spectrum
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® Vibrational levels variations for different chamber pressures (close to wall)
— temperature estimation using simulation tool SPECAIR [8]
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CN Radiation Simulation for Temperature Estimation

ps = 15mbar, Ts =2130K ps =100mbar, Ts =2097K
1 - - - 1 - - - -
Experimental spectrum Experimental spectrum
SPECAIR simulation SPECAIR simulation
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® Vibrational levels variations for different chamber pressures (close to wall)
— temperature estimation using simulation tool SPECAIR [8]

Deviation from thermal EQ w.r.t. T,o: and T (Boltzmann distribution!)
Evident for all three materials (Preform, AQ61, ASTERM)
Only electrically excited states are probed (CN B-X)
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® Vibrational levels variations for different chamber pressures (close to wall)
— temperature estimation using simulation tool SPECAIR [8]

® Deviation from thermal EQ w.r.t. T,o: and T, (Boltzmann distribution!)
® Evident for all three materials (Preform, AQ61, ASTERM)
® Only electrically excited states are probed (CN B-X)

— Check for various distances off the surface
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Boundary Layer Temperature Profile

py=15mbar, T, = 2130K py=100mbar, T =2097K
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® Deviation from thermal EQ close to the wall (low pressures)

Equilibrating effect throughout BL

Mainly equilibrium condition at high pressure (right)
= AlIAA-2013-2770
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Post-Test Visual Inspection

after ablation in air after ablation in N,
® Macroscopic char identification ® Black char over whole surface
® Symmetric charring of AQ61 ® Symmetric charring of AQ61
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SEM Inspection: Stagnation Point (Air Ablation)

Carbon Preform AQ61

Wt
!

® icicle shaped fibers after ablation in ® icicle shaped fibers & high porosity
air (charred resin sparely identified)

® icicle angle and depth of ablation
depend on oxygen diffusion [9]
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SEM Inspection: Ablation in Nitrogen
Stagnation Point Side- & Backface

® ‘cross filaments' found on the surface
after ablation in N ® black carbon (similar to soot)

deposited at surface

— production of strong & stable C-C
bonds (catenation?)
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SEM Inspection: Ablation in Nitrogen
Stagnation Point Side- & Backface

® ‘cross filaments' found on the surface ® black carbon (similar to soot)
after ablation in N deposited at surface

— production of strong & stable C-C
bonds (catenation?)
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Combined Numerical /Experimental rebuilding Procedure

CFD simulation (VKI ICP code) Experiments

i

Coupled
domain Boundary layer parameter Awr Twr Py Py
|

Boundary layer solver
O Input: Boundary layer parameter (LTE CFD computation) & measurements
from experiments
O Procedure: lIteration on boundary layer edge temperature T¢:
= ¢5 =4t = qu (7, Twspe, he, B, )
O Output: Edge enthalpy H., boundary layer chemistry, (catalycity)

IPPW-10



State of the Art Ablation Modeling

Common strategy (Kendall et al.[4]): Assumptions:

Flow field ———— ® Material and flow decoupled
Mass transfer flux Advection flux — Control volume approach

® Chemically active surface
— carbon char reacts with oxygen

® Chemically active species from
— pyrolysis of decomposing material
— edge of boundary layer (equilibrium
chemistry)

Pyrolysis gases B’y
Material field
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1D Stagnation Line Description w/ Surface Ablation
(Poster: A. Turchi)

- - Approach:
commion E @ SPECIES SURFACE MASS
_streamiine T 1n BALANCE (SMB)
““ % SURFACE ENERGY BALANCE
==z (SEB)
-
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1D Stagnation Line Description w/ Surface Ablation
(Poster: A. Turchi)

® Reconstruction of experiments

® Gas mixture properties:
Thermo-chemistry library
MUTATION++ (Poster: J.B.
Scoggins)

Stagnation
stream line

WV3YLS 3344

® 1D stagnation-line formulation with
SMB & SEB

IPPW-10 21 /24



1D Stagnation Line Description w/ Surface Ablation
(Poster: A. Turchi)

® Reconstruction of experiments

® Gas mixture properties:
Thermo-chemistry library
MUTATION++ (Poster: J.B.
Scoggins)

111

WV3YLS 3344

Stagnation
stream line

111

® 1D stagnation-line formulation with
SMB & SEB

Table: Preliminary results on a Carbon Preform (no phenol content

Ty, K e, kg.m
Experiment (dcw = 3 MW /m? p, = 20kPa) | 2783 0.0155 §0115

.S

)

- ~1
75

11
Isothermal ablation w/ nitridation 2783 (imposed) | 0.0202

SEB ablation w/ nitridation 2198 0.0201
SEB ablation w/o nitridation 2174 0.0152
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Application to Mission Design (Presentation: |. Sakraker,
G. Baillet)

QARMAN: QubeSat for Aerothermodynamic Research and Measurements on AblatioN
(Re-entry cube-sat as part of the VKI QB50 project)

= TPM selection campaign (heat load reproduction)
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Conclusions and Perspectives

In-situ observation: Recession rates, sample temperature response, boundary layer
thermo-chemistry (AIAA-2013-2770)

Post-test Analysis Char layer examination at carbon fiber length scale:
Mechanisms of fiber oxidation in diffusion-limited regime
Carbon deposition on surface in N, environment

1D-Code Comparison: Stagnation line description matches experimental results within
uncertainty

More conditions for additional comparison / validation

Extend to carbon-phenolic ablator (loose coupling with material
code)

— Goal: Comparison of BL chemistry and spectroscopy data
(profiles, mole fractions) for code validation

|
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