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A VENUS SEISMIC EXPERIMENT FOR THE LATE 1970’S

JorN B. DERR

ABSTRACT

NASA is planning a series of small-payload Venus missions, with launches begin-
ning in 1976, some of which may be suvited to small active and passive seismic ex-
periments. Because the Earth and Venus are nearly the same size, one may theorize
many parallels in seismic and tectonic activity, and any differences will provide
information about the development of the Earth, as well as of Venus. A combined



Venus Interior Structure Mission
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VISM Mission Concept Presentation, 1993. Courtesy of Ellen Stofan.



Progress Towards the Development of a Long-Lived Venus
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Solar Elevation (deg)
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Venus solar day ~117 Earth days.

Visibility of Earth from equatorial
location ~80 days long, ~50 with
terrain mask.

200 day mission sees 2
communications windows (albeit of
different quality, owing to changing
range)



Temperature (°C)
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As-flown Pioneer Venus temperature
evolution (Lorenz, IPPW5)

Multiplying terminal temperature rate
~1.2 K/min by heat capacity
estimated from subsystem masses

(~1.2E5 J/K) suggests total heat gain
of ~2.5 kW !

This is ~500W internal dissipation,
~1.7kW through insulation and
>300W through penetrations.

Can scale by pressure vessel size,
estimated number of penetrations.
Still seems hard to avoid expecting
100-200W cooling requirement.



ASRG unit under test at
NASA Glenn, March 2010

Discovery AO incentivized
use of ASRGs. Two ASRG
missions commencing
Phase A study (Chopper
and TiME).



Venus surface power and cooling systems’™

Geoffrey A. Landis*, Kenneth C. Mellott!
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Peak Velocity (micron/s)

100000

10000

1000

100

10

|

|

| A M8
® M7.4 1um
'. B M5.7 @21}42
. MA0.9*%dM-1.5)
I Te——]
250 2500 25000

Distance (km)




4a

SYLMAR AFTERSHOCK
M3.0, 65Km

Mmm i

i~
a ig 24 3@ 42 5@ ER 14 8@ 5A lBB IIB l:ﬂ 138

CORONA QUARRY

+—

102 tons explosive
T M2.5, 69Km
zﬂ-» A/
Sy VWO AM ot

........
T

28T

vvvvvvvvvvvvvvvvvv T

TIME (S5ECONDS)
EVENT MODE COMPRESSED DATA

) IB 2! iﬂ qn'fsa SI 1ﬂ Bl SB lﬂﬂ IIB IZI I3B

AMFL I TUDE

o]

I
x
L

AMFL I TUDE

FREDG

FREQ RARMFLITUDE

A Martian Earthquake ?

A single event was identified as a
possible Marsquake, on Viking lander 2
Sol 80. Time history appears consistent
with a small, nearby seismic event.

Statistical significance of a single event is
very high (if itis real),

However, no contemporaneous wind
data was acquired, so cannot eliminate
wind gust loading on lander as a possible
cause of this event. (And Viking 1
seismometer did not uncage, so cannot
be used for confirmation).

D. Anderson et al., Seismology on Mars,
JGR, 1977
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Seismometer signals are coherent with wind
speed measurements, and show the
expected ~V? dependence.

Indicate a lander compliance of 1E7 N/m. (1
DU~2nm)

System considered ‘quiet’ for winds below 3
m/s.

Nakamura & Anderson, GRL, 1979
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MEASUREMENT OF WIND VELOCITY ON THE SURFACE
OF VENUS DURING THE OPERATION OF STATIONS

VENERA 9 AND VENERA 10 Translated from Kosmicheskie Issledovaniya, Vol. 14, No. 5, pp. 710-713, September-October, 1976.

V. s. Avduevskii, S. L. Vishnevetski, Orioinal article submitted June 7, 1976.

1. A. Golov, Yu. Ya. Karpeiskii,
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Fig. 5. Measured velocities at the landing site of automatic interplane-
tary station Venera 10,

Only Venus surface wind measurements are those from cup
anemometers on Venera 9 and 10, 49-minutes and 90-seconds
long, at 0.4 Hz with ~0.2 m/s resolution. Described statistically as
(mean, s.d.) of (0.4,0.1) and (0.9, 0.15) respectively.

Winds estimated from Groza microphone on Venera 13, 14 to be
similar.

Wind fluctuations of this magnitude correspond to dynamic pressure
of winds ~20 m/s on Mars, ~100 nm displacement
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ASRG Interface Control Document (Discovery 2010 Program library)
specifies operation at 102Hz, with F=35N reaction force on a large
object.

If lander leg stiffness is zero, and lander mass M~600kg, then this
implies F/M~6mg, velocity of 90 microns/s displacement of ~141nm.

Lander stiffness is harder to estimate. 4cm tube, 1m long with 5mm
walls has bending stiffness k=1E5 N/m. Surveyor lander stuffness
~3ES5 N/m (Sutton and Duennebier, 1970). Examination of Viking wind
displacements suggests k~2E7 N/m. Required stiffness to suppress
motion >> 35N/141nm~2.5E8 N/m.

Although electronic filtering in Seismometer electronics tends to
effectively suppress signals (e.g. 6" order Butterworth filter on Viking,
60dB/decade at 4Hz suppresses 100Hz signal by 1048), detector could
be mechanically saturated.

Need to mechanically isolate Stirling system from seismometer.



Assuming same activity as Earth (~10 magnitude 7 quakes/yr, 100
magnitude 6, etc...), but uniformly distributed, and foregoing magnitude-
displacement relationship, we would expect the following number of
events as a function of detection threshold

1nm (few x better than Viking, slightly poorer than Apollo)

~ 7000 events, mostly from nearby 3,4 magnitude events

[ NB wind noise at terrestrial sites, even in deep boreholds ~0.1nm:
Microseisms at coastal sites ~1-2nm ]

10nm (reasonable goal ?)
~660 events, mostly 4 and 5.

100nm (unmitigated ASRG vibration levels)
~34 events, magnitude 5-7.

In 50 day mission, with 10nm threshold, might expect ~100 events. If
seismic activity is 10x poorer, could still determine that to ~30%.



Conclusions

Study has estimated likely cooling
needs of 100-200 W

Goal lifetime should be 200 days, with
50 day floor.

Wind measurements are essential to
support seismic investigation, as well
as in their own right. Wind noise on
installed seismometers, and via

ground coupling, needs further study.

If uniform Earth-like seismicity, a 10nm
movement threshold (determined by
wind shielding, vibration isolation)
should yield useful number of seismic
events.
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