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Binary Scaling (1)

Artist’s rendering of Mars Science
Laboratory entering the martian
atmosphere (JPL photo).

m

Schlieren image of a 1/30 scale model
of the MSL aeroshell in AEDC’s
Hypersonic Tunnel 9 (AEDC photo).

Momentum equation (Mach-Reynolds scaling):
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Mass equation (Binary scaling):
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Similitude parameters:

1. velocity v∞ (or enthalpy H∞);

2. density-length product ρ∞R;

3. nature of test gas and geometry of model.
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What about radiative coupling?

Anderson, J., An Engineering Survey of Radiating Shock Layer, JSR
7(1):1665-1675, 1969.

Goulard number
Quantifies radiative coupling.

Γ =
2Qrad

ad

0.5ρ∞v3
∞

=
Radiative energy flux

Kinetic energy flux

Rule of thumb: if Γ > 0.01 (' Stardust peak)
the flow and the radiation are coupled.

Binary scaled flows

Γ ∝
v5
∞
ρ∞

=
v5
∞ R

ρ∞R

Strongly coupled flow (i.e. interplanetary
entry) duplicated in laboratory
→ smaller length-scale R
→ radiative coupling diminished.
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Test condition design (1)

Test case: Venus
atmospheric entry

1. High temperature
CO2 − N2 mixtures are
populated with efficient
radiators;

2. Venus atmospheric entry is
much faster than Mars;

3. State-of-the-art models
could benefit from good
experimental data.
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Mars direct ballistic entry
Pioneer Venus Day probe, 1978

Slowest Venus entry
Vega 1, 1984
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Test condition design (2)

Tests were conducted in the X2 expansion tube
(University of Queensland) in flow of similar H∞ and
different ρ∞, using cylindrical models of which the
radius was adapted so that ρ∞R ' 30.

Plate
thickness H∞ ρ∞ R Γ

[mm] [MJ/kg]
[
g/m3

]
[mm] [−]

1.2 43 1.7 17.5 0.06
2.0 46 5.0 6.0 0.03
2.5 42 9.9 3.0 0.02
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Stills of high speed video recordings
corresponding to the passage of the test
flow over the models.
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Shock stand-off
Length-scale of the flow L increases → Radiative coupling Γ increases
→ Temperature T decreases / Flow less dissociated → Density ρ increases
→ Dimensionless shock stand-off ∆/R decreases
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Measurement
Ambrosio (1962)

Hornung (1972)
Inger with viscid correction (2004)

Γ ∼ 0.06

Γ ∼ 0.02

Γ ∼ 0.03
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Stagnation point total heat flux (1)
Between binary scales flows:
- Conductive heat flux scales as the inverse of the length scale QcR = constant
- Adiabatic radiative heating is constant Qr = constant
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Measurement

Zoby (1968)

Tauber with radiative heat flux (1987, 2010)
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Stagnation point total heat flux (2, preliminary fit)
Assuming the non-adiabatic heating rate to follow the shape of a sigmöıde:
- Satisfying agreement between theory and experiments
- Only a first-order approximation, but confirms what was observed earlier.
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Measurement

Total heat flux

Radiative heat flux
Convective heat flux
(averaged from correlations)
Adiabatic limit for the
radiative heat flux
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Stagnation line radiative intensity (preliminary results)
The shock layer over small model w.r.t. large model:
- Approximately 10x brighter
- Less molecular features
→ confirms the hypothesis of a hotter shock layer (more work needed)
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Conclusion

• Binary scaling is one of the experimental strategy traditionally used to duplicate
hypersonic flows in ground-based laboratories (i.e. to prepare and validate
interplanetary probes entry vehicle design).

• We have shown that the macroscopic features of the flow are altered if it is
coupled with the radiation (i.e. Γ > 0.01).

• More specifically, the coupling decreases as the length-scale of the flow is
reduced, leading to hotter shock layer and thus:

1. the shock stand-off inflates;
2. the stagnation point radiative heat flux increases;
3. the flow is more dissociated (to be confirmed).

ANY QUESTIONS?
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