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5 Science Objectives

Mass Spectrometry is the most general technique for
addressing in situ geochemical and biological science
objectives on planets and satellites of the solar system.

Obijectives are to understand the nature, abundance, and

iIsotopic properties of all important materials above, on and
under the surfaces of moons and planets.

Gases, rocks, soils, ices, liquids
Important target compounds:

« Carbonaceous: Biomarkers, non-biogenic organic, inorganic
* Non-carbon (minerals): Compounds with H, N, O, P, S, Fe, Mgq,...
« Gases: CO,, N,, O,...; noble gases



m>" Example 1: Martian Isotope Ratios”

Isotope Ratio Value vs. Earth  Implications

D/H 5.8 => loss of meters of H,O
be/i*c 1.05-1.07 => loss of ~ bar of CO,
PN/N 1.6-1.7 = loss of 90% of N,
*0/'°0 1.025 => large resevoir (silicates?)
SAr/Ar 1.3 => loss 0f 90% of Ar
PXe/*Xe 2.5 => loss of 90% of Xe

I Jakosky, Orig. Life Evol. Biosph., 29, 47, 1999;
Yung and DeMore, Photochemstry of Planetary Atmospheres, Oxford, 1999.



Example 2: Isotopes in Murchison

meteorite
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Figure 3. lIsotopic ratios for carbon and hydrogen for various molecular compounds from the
Murchison meteorite (Cronin and Chang, 1993; and Chang, 1996, private communication). Terrestrial
ocean water has by definition D = 0 and the cosmic D/H ratio is (0.8-2) x 10~ % (Irvine and Knacke,
1989).



Example 3: Biomarkers—signatures of life
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R. Summons, Department of Earth, Atmospheric and Planetary Sciences, MIT



Designing mass spectrometers for space:

* Very complex systems requiring lengthy development
« ALWAYS: Performance vs. resources
« They aren’t cheap




> More than meets the eye..

— There’ s more to a “mass spectrometer experiment” than
just the mass spectrometer...

— Preparation and separation techniques are essential:
pyrolysis, laser ablation, gas chromatography,...
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TOF Principles

« Mass resolution in time-of-flight (TOF):
m/Am = t/2At = L/2vAt

At

J\

« Sensitivity:

S = current extracted/pressure in source (e.g., Amps/Torr)
S = minimum detectable mass of sample (e.g., 10-'2 grams)

S = minimum fraction of sample (e.g., parts per billion = ppb)



=5 What is “Ultra-High Resolution™?

« “High” resolution: m/Am ~ few 100
— Viking, Venus, Galileo Probe, Huygens

« “Very high” resolution m/Am ~ few 1000
— Rosetta RTOF, DFMS, COSAC

» “Ultra high” resolution: m/Am >~ few
10,000

— SWRI prototype (this paper)




Three types of mass spectrometers

— Magnetic

 First miniaturized by Nier (Viking); Hoffman (Pioneer
Venus); Krankowsky and Eberhardt (Giotto)

 High resolution DFMS on Rosetta (Balsiger et al.)
— Quadrupole

« Used extensively by Niemann (Galileo Probe,
Huygens, Cassini INMS); also Rushneck (Viking)

— Time-of-Flight (TOF)
* First high resolution instruments are on Rosetta

— RTOF/ROSINA (Balsiger et al.)
— COSAC (Casares et al.)

* |s one type better than the others?
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R The answer is YES

* In many (not all) cases TOF has advantages:

— Resolution depends primarily on length of the flight path
» Longer flight path = higher resolution
» Flight path can be folded using the multi-bounce technique

— Resolution and sensitivity are decoupled

* Unlike magnetic and quadrupole spectrometers, resolution does
not depend on slits

» Transmission from source to detector ~50% (losses <1%/bounce)
— High spectral sampling speed

* 1000 to 10,000 spectra/s

 |deal for GC x GC and laser ablation techniques
— High duty cycle ~50%

« Scanning is not required to get spectra
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S How TOF mass spectrometry works
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What' s better than TOF MS?

* Multi-bounce time-of-flight (MBTOF) mass spectrometry

« MBTOF offers a much longer flight path and therefore higher
mass resolution for the same volume of length L:

— m/Am = t/2At

— t=D/N

— multiple bounces: D = NL/v
— m/Am = NL/2vAt

 For resolution to increase with the number of bounces the
ions must stay time-focused: At cannot increase as N
iIncreases!
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S How Multi-Bounce works
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S
% Xe isotopes with 0 bounces

Xenon Electronlmpact TOF Mass Spectra
Linear Mode [0-Bounces]
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S
% Xe isotopes with 2 bounces

. Xenon Electron lmpact TOF Mass Spectra
¢ Linear Mode [0-Bounces]
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L Xenon Electronlmpact TOF Mass Spectra
¢ Linear Mode [0-Bounces]
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.» Xe isotopes with 12 bounces

L Xenon Electronlmpact TOF Mass Spectra
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Accuracy: Xe spectrum vs. NIST standard

INMS Lab Prototype | Trace Xe gas mix leak| 2.1 e-6 Torr|
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Mars: Separation of CO and N,
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m/Am = 59,370: Phased ejection

* Mirror-2 potential is dropped while ions are still in mirror
— lons are refocused in time just before they reach the detector
— Time resolution is actually higher than HV pulse rise times of ~20 ns
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« MBTOF has been re-built to higher mechanical tolerances
— Optical planes parallel to 30 um over 40 cm (1 part in 13,000)
— Axial alignment to 100 pm over 40 cm

» Tests begin in late July
« Goalis m/Am = 100,000
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e a8 Conclusions

| adsr,

-

« MBTOF-2 is next generation high performance MS
— Demonstrated m/Am = 60,000 => might resolve 8’Rb/?’Sr
— Sensitivity ~7 parts per billion => martian methane
— GC x GC (=> biomarkers) and laser ablation (=> dating)

« Estimated resources for a full-up MBTOF flight unit

— Including gas inlet, getters, ion source, high voltages, signal
acquisition and processing electronics:

— ~12 kg & ~35 W, comparable to Rosetta spectrometers
— High performance isn’t cheap
* Methods for lowering resources:

— Power: fast ADCs; nanotube emitters rather than filaments
— Mass: monolithic optics; nanotube emitters
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