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ABSTRACT

Pinpoint landing is a needed capability in order to in-
crease the number of possible target sites for future plan-
etary robotic landers and maximize their mission return.
This article proposes a navigation system fusing image-
to-map landmark matches and inertial data through an ex-
tended Kalman filter to land close to a point selected on
a planetary surface map. No assumption is made about
terrain topography so that it is compatible with rugged
landing sites which can appear at very low altitudes or
on bumpy bodies. Two methods are proposed to identify
online image feature points on the on-board map using
their geometric context. They are memory-efficient and
robust to illumination changes. Monte Carlo simulations
results are presented using a lunar landing dynamic sim-
ulator coupled with a virtual image generator.

1. INTRODUCTION

Exploration of the solar system has relied a lot on robotic
landing vehicles to reach the surface of planetary bod-
ies and enhance our knowledge on them. Some missions
target regions of scientific interest spotted from orbital
data. Some others aim at reaching previously-landed as-
sets, like astronauts operating on the surface or a rover.
In addition to these mission objectives, technical con-
straints must also be met by the landing sites. These
can concern the presence of surface hazards to avoid or
specific illumination patterns for solar power generation.
Areas meeting all these requirements are usually of lim-
ited extent. Thus, the more accurate the landing system,
the more candidate sites become available to maximize
mission return. Landing accuracy is defined as the ac-
tual touchdown distance to the surface point chosen from
map data before launch. A 100-meter precision is usually
agreed as the definition for pinpoint landing.

Achieving such an accuracy is a challenge for the navi-

gation, guidance and control systems. Navigation shall
estimate the state of the lander in terms of attitude, ve-
locity and position of frame {b} attached to the vehicle,
with respect to frame {g} tied to the planet and in which
maps are referenced. These outputs are passed forward
to the guidance system, which updates the target trajec-
tory accordingly, and to the control system, which tries to
achieve it. In space exploration, communication delays
associated to long distance from Earth force these capa-
bilities to be embedded.

Without external radio or satellite help, the navigation
system can only rely on terrain sensors to attain the ex-
pected precision. An optical camera sensor is chosen here
as it is lightweight, cheap, space-qualified, and also be-
cause only such passive devices can operate at any alti-
tude from orbit to touchdown. It does require sunlight to
provide images but this constraint fits most current mis-
sion scenarios, which target illuminated areas. New high-
resolution planetary maps provided by recent orbiters
have surface resolutions of a few meters only [3]. Such
details allow landmarks to be identified on the maps even
at very low altitudes to make the navigation system more
accurate. However when close to the ground, 3D aspects
of most terrains are enhanced by perspective distortions
and cannot be neglected any more. This is also true for
the whole descent towards more bumpy bodies, like aster-
oids for instance. Handling the 3D geometry of the ter-
rain is usually challenging for cameras because an image
measurement is fundamentally 2D. Active LiDAR sen-
sors would be more adapted to 3D terrains by nature, but
they cannot operate at high altitude and are harder to ac-
commodate on a spacecraft. This work is thus focused on
developing a camera-based pinpoint landing navigation
system compatible with these low-altitude flight phases
and rugged terrains in general, while fulfilling real-time
mission hardware constraints.
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Figure 1: Visual and inertial data integration structure.

2. SYSTEM OVERVIEW

The navigation system proposed in Fig. 1 fuses iner-
tial data from an Inertial Measurement Unit (IMU) with
image data from the camera. The IMU measures non-
gravitational acceleration and angular rates in an iner-
tial frame. Time integration of these measurements al-
low for a high-frequency estimation compatible with con-
trol loop requirements. It also ensures that a continuous
navigation solution is outputted, even if the image pro-
cessing block fails to produce measurements. Descent
images are processed on-board to extract and identify on-
line features points on cartographic data and correct the
inertially-propagated state estimates through a filtering
architecture.

Section 3 is devoted to the process of finding reliable
matches between online image features and mapped or-
bital landmarks. Reference [11] draws a brief state of the
start of methods used for this purpose. We chose to work
on methods identifying landmarks thanks geometrical de-
scription only. Unlike the use of radiometric signatures,
they are more efficient in terms of on-board memory cost
and robustness to illumination changes between the map
and the online images. Such a method should be able to
deal with 3D landmark distributions and also be robust
to non-detections, i.e. a landmark is not present in the
online image feature set, and to a large number of false
alarms, i.e. online image features which do not corre-
spond to any landmark. We propose a two-step process.
The first step consists in searching for putative matches.
It is based upon the similarity between the geometric dis-
tributions of 2D features sets. These sets are the online
features set and the set of landmarks projected on the im-
age plane using the current estimation of the camera pose.
The second step is a RANSAC-based robust 3D-2D pose
computation [7]. Note that we are not interested in the
pose itself but in the inlier set of matches provided by
RANSAC.

Data fusion is implemented through an Extended Kalman
Filter (EKF), detailed in Section 4, to handle the non-
linearities in the visual measurement model. The archi-
tecture is based on that proposed by [17]. Inertial navi-
gation equations allow to propagate the attitude, velocity
and position of the spacecraft by successive integrations
in the predictive part of the filter. These quantities are es-
timated in frame {g} using initial conditions provided by
the previous flight phase. Image measurements of abso-
lute features matched with the map are processed in the
update part of the filter. Their known 3D coordinates in
{g} allow to predict their image coordinates from the a
priori state estimation done in the filter and thus work
out the measurement innovation for each of them. Com-
puter processing delays associated to image processing
are taken into account by adding the pose 1 of the camera
frame at the time last image was taken in the state vector
of the filter. Unlike loose data fusion architectures, where
the vision subsystem estimates the state independently of
inertial navigation, tight fusion structures like that pro-
posed here allow to update the state vector in the filter
even with very few image point measurement. They are
thus then less sensitive to degradation of visual observa-
tion conditions. Estimation is also more accurate thanks
to modeling the system better into the filter.

3. MAPPED LANDMARK MATCHING

In computer vision, there is usually a first step of image
processing aimed at extracting features from the images,
so as to reduce the number of input parameters. Here,
we employ corner point features extracted by the Harris
and Stephen’s detector [9] both on the online and orbital
images. These features capture intensity extrema com-
puted from spatial derivatives. For planetary images, we
assume a significant amount of the corners are due to ter-
rain topography and thus can be reliably detected both in

1Attitude and position.



Figure 2: Orbital map generation process

a descent and orbital image of the same area. The generic
nature of these image features means that they can be
used on any type of planetary terrain, unlike craters which
cannot be found everywhere [15].

Absolute matching consists in matching on-board land-
marks extracted from orbital data acquired about the se-
lected landing area with features extracted from online
descent images. Let us emphasize that in the chosen tight
integration scheme, this goal of image processing is not
to estimate through camera pose computation but to pro-
vide a set of reliable matched features to be used in the
measurement equations of the EKF. The absolute match-
ing goes in four steps:

1. Online extraction of image feature points

2. Projection of the 3D model onto the expected focal
plane,

3. Putative matching process,

4. RANSAC-based robust matching.

3.1. On-board and online data

The map stored on the on-board memory consists in the
3D coordinates of landmarks extracted from an orbital
image. They are recovered from a Digital Elevation
Model (DEM) of the area collected prior to the landing
in a process illustrated on Fig. 2. Current image and laser
ranging technology provide DEMs and orbital images of
planetary surfaces with resolutions close to a meter [3].
Orbital landmarks are obtained by feature extraction on
the orbital image of the landing zone. Knowing the po-
sition and attitude in planetary frame {g} of the satellite
which took the images, along with the calibration matrix
of its camera, one can determine the 3D lines going from
the optical center of the camera to each terrain point [10].
The intersections of these lines with the planetary surface
rendered from the DEM points through 2D interpolation
constitute the map. This 3D model aims at corresponding
to potential online descent features and is the only pre-
vious knowledge of the terrain required by the proposed
navigation filter.

3.2. 3D model projection

From the current camera pose estimate from the filter, and
from the known camera calibration model, the embedded
3D model of the map can be projected onto the expected
focal plane of the image to get a prediction of the online
image feature point distribution. This eventually leads to
two sets of image features: one extracted from the online
image, and one predicted from the map and state esti-
mates. An example is shown in Fig. 3.

Figure 3: Extracted online image features (green dots)
and projected map landmarks (yellow circles)

3.3. Putative matches

This step aims at selecting a fraction of all the possible
matches between an image feature and the map in which
the correct matches will be sought for. Even though sev-
eral outliers couples are selected, this pre-matching step
allows to select the most promising match candidates
used as input in the following robust matching step. Two
alternatives were tested: Shape Context description and
General Hough Transform.



3.3.1. Shape Context description

Following the Shape Context description for object
recognition introduced by [1] and applied to planetary
descent navigation by [14], we characterize a feature by
the geometric distribution of its neighbors in the image,
in terms of distance and polar angle, as shown in Fig.
4. The number of neighbors in each quadrant is counted
within a region comprised between a minimum radius br
and maximum radius pr, and stored into an histogram.

Figure 4: Geometric signature employed [14]

Signatures in the online image are compared one to one
with that of the projected 3D landmarks within an un-
certainty area derived from the filter states covariance.
The comparing criterion is the Chi-square distance. All
pairs of points between the online and prediction image
for which the Chi-square is below a certain threshold are
considered as potential matches.

3.3.2. General Hough Transform

Here, it is assumed that the image error between the land-
mark image point and their estimate can be approximated
by a translation in the image plane. This is not rigorously
true because of perspective distortion effects in the im-
age but should the translation be searched within a set
of quantized vectors with quantization step large enough,
a voting accumulation effect will happen for the correct
ones. This approach is known as Generalized Hough
Transform in the object recognition field [8] and makes
the basis of operational real-time infrared missile guid-
ance systems [6]

The matching process is the following:

1. Each possible match between an online feature and a
projected orbital match defines a possible 2D trans-
lation.

2. Accumulate all translations:

• whose norms are below a threshold related to
the estimated camera pose covariance,

• after quantization with a step related to the ex-
pected perspective distortion effects.

3. Select the peak of the accumulator: it yields the es-
timated discrete translation.

4. Shift the projected landmarks according to the esti-
mated translation and match them with the closest
descent point.

5. Accept the match if the closest point is not too far.

Fig. 5 shows the quantized grid in which translation votes
are accumulated in two cases: correct accumulation on
Fig. 5a and ambiguous vote on Fig. 5b. The ambiguous
case happens when the camera is so close to the ground
that not enough orbital landmarks appear in the field of
view and thus the accumulation effect is not sufficient.
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Figure 5: Correct and ambiguous results of the voting
process. The ambiguous case occurs when very close to
the ground. Not enough landmarks appear in the field of
view and thus the accumulation effect is not sufficient.

3.4. RANSAC-based robust matching

Fischler and Bolles [7] introduced the RANdom SAmple
Consensus (RANSAC) algorithm which aims at fitting a
model to experimental data and provide the associated
set of inliers. In our case, the model is the camera pro-
jection matrix2, and the experimental data taken as inputs
are the potential (2D, 3D) potential matching pairs. The
calibrated camera projection matrix can be computed in
a closed form from a minimal set of 3 (2D, 3D) point
correspondences as shown in Fischler and Bolles [7] too.
Three correspondences actually bring multiple solutions,
but we select that for which camera position is the closest
to the filter position estimation. The aim of this final step
is to get the set of matches which correspond to camera
projection matrix with the highest number of inliers. Pose
computation in the RANSAC is used as a transformation
model to find the inliers but the computed pose is only a
byproduct which is not used in the filter.

The RANSAC-based final algorithm operates as follows
from a 5xN potential match matrix made from a set S of
N (2D, 3D) couples:

1. A set s of 3 potential matches is randomly selected
from S;

2Since the camera is calibrated, the knowledge of the projection ma-
trix is equivalent to that of the attitude and position of the camera.



2. If there is any degenerated configuration3 in the 2D
points of s, then do step 1 again – this may happen
because of the multiple potential matches for a same
descent image;

3. Compute the possible camera projection matrices
associated to s,

4. Select the matrix for which the camera position is
closest to the filter estimate,

5. Determine the inliers for the projection matrix se-
lected in step 4. Namely, inliers are potential
matches for which the 2D projection of the 3D ter-
rain point, according to the selected projection ma-
trix, is within a certain image distance threshold of
the 2D image point. The image threshold is selected
as 3σim, where σim is the standard deviation of the
noise associated to image feature extraction.

6. If the number of inliers is greater than the previous
one, then store the inlier vector.

7. Back to step 1 until the maximum set of iteration is
reached.

The maximum number of iterations in step 7 is deter-
mined adaptively to ensure with a probability p = 0.99
that at least one of the set s is free from outliers [10].
Once the maximum number of iterations is reached, the
stored inlier vector is outputted as final matches to the
navigation filter. It corresponds to the camera projection
matrix having the largest number of inliers. Note that
through this camera matrix, part of the state is already
computed in this matching step outside of the filter. Al-
though it is not done here, this redundancy can be used
for system cross-checks with the estimated state output
from the filter.

3.5. Discussion

The two algorithms which have been presented in this
section aim at robustly matching mapped landmarks with
online images. Unlike many other landmark matching
methods in the literature, no flat world assumption was
made in the process. This allows such methods to oper-
ate over highly-3D terrains, as was shown by the prelim-
inary geometrical simulation in [5]. We use DEM-based
3D landmark position as in [15], but our use of geomet-
ric signatures and RANSAC-based robust matching al-
lows to prevent false matches more efficiently. Note that
RANSAC is a proven technique in real-time visual odom-
etry for terrestrial robotics.

3For instance, if the three points are aligned or two of them are iden-
tical.

4. ESTIMATION

We now go further into the EKF estimation architecture
used in this approach. The reader can refer to [17] to learn
more about the derivation of the filter equations.

4.1. Model

The system considered can be put into equations as:

q̇bg =
1
2Ω(ωbgb)q

b
g, ḃgyr = nbgyr,

v̇ggb = a
g
gb, ḃacc = nbacc, ṗ

g
gb = v

g
gb

(1)

The vehicle state is noted xV =[
qbTg bTgyr vgTgb bTacc pgTgb

]T
. qbg is the quater-

nion describing the rotation from the world frame {g}
to the vehicle frame {b}. vggb and pggb are respectively
the velocity and positions of {b} with respect to {g}
projected in the axes of {g}. Lastly, bgyr and bacc are
the gyrometer and accelerometer biases projected on the
vehicle frame {b} which is assumed to be the same as
the IMU frame.

The other parameters in the dynamic model of the Eqs.
1 are: gaussian centered white noises nbgyr and nbacc
introduced only to allow for the estimation of gyrometer
and accelerometer biases, the vehicle acceleration with
respect to the world frame aggb, the angular velocity vec-
tor ωbgb projected on the vehicle frame, and the operator
Ω defined by:

Ω(ω) =

[
0 −ωT
ω − [ω∧]

]
,

[ω∧] =

[
0 −ωz ωy
ωz 0 −ωx
−ωy ωy 0

]
.

We shall note the classic convention used here for the
quaternions with the first component representing the
scalar part, and the three others for the imaginary parts.
The angular velocity and acceleration data are inferred
from the IMU measurements ωIMU and aIMU using
Eqs. 2 and 3:

ωIMU = ωbgb +C(qbg)ω
g
ig + bgyr + ngyr, (2)

aIMU = C(qbg)(a
g
gb − g

g
b + 2

[
ωgig∧

]
vggb

+
[
ωgig∧

]2
pggb) + bacc + nacc.

(3)

C(.) is the coordinate change matrix associate to a
quaternion, ωgig is the angular velocity vector of the
planet frame with respect to the inertial frame, ggb is the
local gravity vector, ngyr and nacc are gaussian white
noises centered on IMU measurements.



4.2. State propagation

We just saw how the system can be modeled using a func-
tion f such that ẋV = f(xV ,nIMU ), where nIMU =[
nTgyr nTbgyr nTacc nTbacc

]T
is the IMU measure-

ment noise, of covariance matrix QIMU . Function f
is depending in inertial measurements and thus evolves
through time.

By applying the expectation for each term in the Equation
system 1, one obtains the Eqs. 4 to propagate forward in
time the state of the vehicle x̂V :

˙̂qbg =
1
2Ω(ω̂)q̂bg,

˙̂
bgyr = 03×1,

˙̂vggb = C(qbg)
T â− 2

[
ωgig∧

]
v̂ggb −

[
ωgig∧

]2
p̂ggb + g

g
b ,

˙̂
bacc = 03×1, ˙̂pggb = v̂

g
gb

(4)

where â = aIMU − b̂acc and ω̂ = ωIMU − b̂gyr −
C(q̂bg)ω

g
ig .

These equations are simply integrated using first-order
trapezoidal rule given the high frequency fIMU = 100
Hz of the IMU.

4.3. Covariance propagation

To estimate the system state in an EKF structure, the state
estimation error δxV = xV − x̂V is used to provide a
linearized model with respect to the estimated state vector
given in Eq. 5

˙δxV = F V δxV +GV nIMU (5)

where one can refer to the journal article [17] for
the details of these matrices. The error state vec-
tor is parametrized with 15 components δxV =[
δθbTg δbTgyr δvgTgb δbTacc δpgTgb

]
. The error

quaternion δq is defined by q = q̂ ⊗ δq, with ⊗ the
quaternion product. Using the small angle approxima-
tion, one can write δq '

[
1 1

2δθ
T
]T

and thus δθ is
a correct minimal representation of the error quaternion.

In practice, as soon as the second camera image is
available, the error state vector of the filter employed
for this study contains 21 components such that δx =[
δxTV δθck−1T

g δpgTgck−1

]
. Frame {ck−1} is that at-

tached to the camera at previous time instant k − 1. This
structure of the error state vector allows to deal with de-
lays associated with image processing time. It keeps in
memory the attitude and position of the camera at the last
time instant, assumed separated from the current one by
the image processing computation time.

Error covariance matrix at time k− 1 is divided in blocks
as shown in Eq. 6:

P k−1/k−1 =

[
P V Vk−1/k−1

PECk−1/k−1

P T
ECk−1/k−1

PCCk−1/k−1

]
(6)

where P V Vk−1/k−1
is the 15×15 matrix representing the

covariance of the vehicle error state vector, PCCk−1/k−1

is the 6× 6 covariance matrix for the camera error states,
and PECk−1/k−1

is the 15 × 6 correlation matrix for ve-
hicle and camera error states.

This covariance is propagated to time instant k with the
help of IMU measurements delivered at frequency fIMU

:

P k/k−1 =

[
P V Vk/k−1

PECk/k−1

P T
ECk/k−1

PCCk−1/k−1

]
(7)

with PECk/k−1
= Φ(tk−1 +

1/fIMU , tk−1)PECk−1/k−1
. Matrix P V V is propa-

gated through numerical integration of Eq. 8 [2]:

Ṗ V V = F V P V V + P V V F
T
V +GVQIMUG

T
V . (8)

The transition matrix Φ(tk−1 + 1/fIMU , tk) between
time instants k−1 and k of system 5 formulated in dicret
time is integrated by definition for τ ∈ [ 0, 1/fIMU ]
from Eq. 9:

Φ̇(tk−1 + τ, tk−1) = F V Φ(tk−1 + τ, tk−1) (9)

with initial condition Φ(tk−1, tk−1) = I15.

4.4. State management

At each new image capture, the current camera pose es-
timate (q̂cg, p̂

g
gc) is appended to the state vector, which

then virtually extends to 27 components. The Eqs. 10
and 11 show the computation of this camera pose from
the estimated vehicle pose and from the known pose of
the camera frame {c} with respect to {b}:

q̂cg = q̂
b
g ⊗ qcb (10)

p̂ggc = p̂
g
gb +C(qbg)

Tpbbc (11)

The state error covariance matrix is augmented too, with
the Jacobian matrix J calculated from Eqs. 10 and 11:



P k/k ←
[
I21
J

]
P k/k

[
I21
J

]T
(12)

J =

[
C(qcb) 03×9 03×3 03×6[

C(qbg)
Tpbbc∧

]
03×9 I3 03×6

]
(13)

One must note that matrix P k/k should be reduced after
the following update step of the Kalman filter by remov-
ing the covariances corresponding to the previous camera
pose.

4.5. Measurement model

Once the states and the covariances of their errors are
propagated, it becomes possible to build an update in the
EKF from image measurements. The absolute matching
algorithm detailed in Section 3 provides the 3D coordi-
nates pgglj in world frame of point j identified at normal-
ized image coordinates zj at previous time4 k − 1. The
measurement model is given in Eq. 14:

zj = hj(x) + nj =

[
1 0 0
0 1 0

]
pcclj

[ 0 0 1 ]pcclj
+ nj (14)

where pcclj = C(qcg)(p
g
glj
− pggc) is the 3D position of

the point in the camera frame, nj is the feature extraction
noise of covariance matrixRj = σ2

imI2.

The measurement prediction is computed from this
model and from the knowledge of pgglj in Eq. 15:

ẑj =

[
1 0 0
0 1 0

]
C(q̂cg)(p

g
glj
− p̂ggc)

[ 0 0 1 ]C(q̂cg)(p
g
glj
− p̂ggc)

(15)

The innovation δzj = zj − ẑj can be expressed linearly
in Eq. 16:

δzj 'Hjδx+nj =Hj,δθδθ
ck−1
g +Hj,pδp

g
gck−1

+nj
(16)

with

Hj,δθ =
[ I2 −ẑj ]

[
C(q̂cg)(p

g
glj
− p̂ggc)∧

]
[ 0 0 1 ]C(q̂cg)(p

g
glj
− p̂ggc)

4As a reminder, delay in measurement processing is due to image
processing time.

Hj,p =
[ I2 −ẑj ]C(q̂cg)

[ 0 0 1 ]C(q̂cg)(p
g
glj
− p̂ggc)

Hj = [ 02×15 Hj,δθ Hj,p 02×6 ]

By concatenating in columns the innovations δzj and the
Jacobian matrices of the measurementsHj for each point
j, one can work out the overall innovation δz =Hδx+n
which allows for the computation of Kalman gain and
subsequently the estimated state and covariance updates.

5. SIMULATION AND RESULTS

In this section, we describe the simulation environment
and the preliminary results of the navigation solution pro-
posed.

5.1. Simulator

The results obtained in this section have been gener-
ated for descent trajectories to a terrain rendered in the
PANGU planetary scene generator [13]. An example of
descent image is shown in Fig. 6.

Figure 6: Descent image generated in PANGU.

PANGU-generated descent images cover a field of view
of 70 deg with a 512x512 pixels 8-bits sensor. Images
are degraded by an additional Gaussian image noise with
zero mean and standard deviation equal to one intensity
level. The orbital images used for building the on-board
are 2048x2048 8-bits images, covering a field of view
of 2.5 degrees from a 50-km altitude so as to be similar
to NASA’s Lunar Reconnaissance Orbiter (LRO) narrow
angle camera data [3]. An illumination difference of 20
degrees in azimuth was rendered between the orbital and
descent images.

Inertial data are generated through an IMU model cal-
ibrated to match performances expected on planetary



landing missions of this kind. The trajectory selected cor-
responds to that of an approach phase for a Moon land-
ing. It lasts 80 seconds, starts at a 2-km altitude to end
10 m above the ground [4]. Guidance is based on that of
Apollo Lunar Module [16].

5.2. Matching method comparison

The geometric methods proposed in Subsection 3.3 to
generate putative matches were compared to select the
most performant one in given simulation conditions. The
on-board map was generated from a mosaic of orbital im-
ages covering the area seen during the descent and trans-
formed so as to have a resolution equivalent to an image
taken at 260 km altitude. This resolution gave the best
matching results up to the latest part of the descent for
which a standard orbital image with the LRO character-
istics described above was used to generate more land-
marks at low altitude. 4000 landmarks were extracted
from the low-resolution 16x16 km2 orbital mosaic, and
4000 others from the standard orbital image. 250 fea-
tures are extracted per online image. The parameters of
the Shape Context signature, shown in Fig. 4, are: a mini-
mum radius br = 10 pixels, a maximum radius pr = 100
pixels, 10 rings and 20 wedges. For the General Hough
Transform method (GHT), a circular grid of radius 100
pixels and discretized in squares of 10x10 pixels were
used.
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Figure 7: Putative matching method comparison.

The criterion to select between these two methods was the
number of landmarks after the RANSAC robust match-
ing step. After RANSAC, inlier matches can be assumed
as correct. Fig. 7 shows that the GHT method clearly
achieves more matches: 45 against 15 in average. These
matches are also more distributed across the image which
provides more information to the filter so the GHT was
selected as the reference method for putative matching in
the following.

5.3. GHT performances

We present the results of a preliminary Monte Carlo per-
formance study of the proposed vision-based navigation
filter. 200 Monte Carlo simulations were run using GHT
for putative matching in combination with the RANSAC
algorithm for robustness and outlier removal. The initial
errors were sampled according to independent zero-mean
Gaussian distribution on each axis, with 3σ values equal
to 1 degree in attitude, 10 m/s in velocity, and 100 m in
position. These values are regarded as realistic based on
the 3σ uncertainty in attitude and velocity expected dur-
ing the landing maneuver.

Figs. 8, 9, and 10 show the Monte Carlo results for the
estimation error and the 3σ bound5 from the filter for
each axis respectively for attitude, velocity and position
of frame {b} tied to the vehicle with respect to frame {g}
tied to the planetary surface. Fig. 11 shows the evolution
of matched landmarks with time.

Because of the limited landmarks on the map, less and
less points are visible are the lander progresses down its
trajectory. After t = 4050 s, the mapped landmark match-
ing block does not see enough landmarks to provide re-
liable matches. Before t = 4050 s is the so-called visual
phase, when image measurement updates are processed
by the filter. After t = 4050 s is the inertial phase when
IMU measurements only, suffering drift, are propagated.
Convergence can be observed on the figures for 93.5 per-
cents of the runs. The overall statistics,including the di-
vergent runs, are given in Table 1.

Table 1: 3σ uncertainties at the end of visual phase (V)
and at touchdown (TD)

Variable 3σV 3σTD
Attitude / Yaw (deg) 0.3 0.2
Attitude / Pitch (deg) 0.7 0.4
Attitude / Roll (deg) 0.7 0.3
Velocity / X-axis (m/s) 1.7 1.7
Velocity / Y-axis (m/s) 0.7 0.9
Velocity / Z-axis (m/s) 1.3 1.1
Position / X-axis (m) 66.3 120.5
Position / Y-axis (m) 26.8 50.4
Position / Z-axis (m) 52.0 85.2

Position error at the end of the visual phase falls below 67
meters on each axis. The position error increases then un-
til touchdown due to inertial drift. These results include
the runs which diverge, namely whose final estimation er-
ror is above the 3σ bound estimated by the filter. They led
to position errors of up to 400 m in one case, which alter

5This 3σ envelope is that of the run which converged but had the
largest final standard deviation, it is displayed for illustration purposes
but has no other meaning.
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Figure 8: Attitude errors Monte Carlo results.
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Figure 9: Velocity errors Monte Carlo results.
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Figure 10: Position errors Monte Carlo results.

3980 3990 4000 4010 4020 4030 4040 4050 4060 4070
0

50

100

150

200

250

Time (s)

N
u

m
b

e
r 

o
f 

m
a

tc
h

e
d

 l
a

n
d

m
a

rk
s

Landmark matches

 

 

Matched Landmarks

Landmarks in the FoV
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through time using GHT+RANSAC. Red line above
show the actual number of landmarks in the field of view.



the performance statistics strongly. We wanted to have a
look at the results for the 93.5 percents of runs which did
converge. These are shown in Table 2.

Table 2: 3σ uncertainties at the end of visual phase (V)
and at touchdown (TD) for the 93.5 percents of runs
which converged

Variable 3σV 3σTD
Attitude / Yaw (deg) 0.3 0.2
Attitude / Pitch (deg) 0.6 0.3
Attitude / Roll (deg) 0.6 0.3
Velocity / X-axis (m/s) 0.4 0.7
Velocity / Y-axis (m/s) 0.2 0.3
Velocity / Z-axis (m/s) 0.7 0.4
Position / X-axis (m) 7.4 21.8
Position / Y-axis (m) 4.5 7.0
Position / Z-axis (m) 4.6 10.8

The statistics have tremendously improved using the con-
verging runs only, with position errors falling below 8
meters on each axis at the end of the visual phase, and
below 22 meters at touchdown. Reducing the numbers of
failures causing divergent runs though improvement of
the matching strategy is the subject of on-going work.

5.4. Discussion on EKF linearization

The extended Kalman filter used here employs lineariza-
tion of the system and measurement model to be able
to use regular Kalman filtering architecture. We discuss
in this subsection the consequences of this linearization
from a filtering point of view.

The true physical sensor noise of associated to image
point measurements σim is of the order of one pixel in
512x512 pixels images. Nevertheless, due to the highly-
nonlinear camera projection model, the filter measure-
ment noise can have to be set up to tens of pixels in order
to avoid divergence. A value of 40 pixels was used in this
article. This value is reached after tuning the filter: the
process noise and covariance initialization are tuned to
match the system performance (here the inertial naviga-
tion performance), and the measurement noise is lowered
as much as possible within the stability limit of the fil-
ter. Such high values of the measurement noise degrades
the efficiency of one measurement to update the state es-
timate. Improvements could lower the convergence time
and the final error.

We evaluated the linearization error εlin,j =
‖δzj −Hjδx‖ in pixels for each point j in images
generated for the trajectory studied in this article. Fig.
12 shows the evolution of the mean of linearization
error in the image with respect to altitude. Note that

this plot was generated for 1024x1024 pixels images so
values should be divided by two to match data studied
in the rest of this article for 512x512 images. It can be
seen the non-linearities up to 10 pixels, which is largely
above the true sensor noise. It is to handle these errors
that the measurement noise was made artificially higher
(40 pixels) for the EKF to converge, but this decreased
its performance. Other architectures such Unscented
Kalman Filtering (UKF) or Particle Filtering (PF) are
more suited to non-linear systems and constitute a path
for future work.
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Figure 12: Mean of the linearization error in pixels for all
image point measurements in 1024x1024 pixels image.

6. CONCLUSION AND FUTURE WORK

New high-resolution planetary maps generated by recent
orbital probes are enabling mapped landmark recogni-
tion at very low altitude to increase navigation accuracy.
However, the 3D aspects of the terrain must be taken into
account when this close to the ground. Handling 3D ef-
fects is also important for higher altitude phases of the de-
scent to non-flat bodies, like asteroids. The proposed ap-
proach is a tight vision-aided navigation filter fusing data
from an IMU with absolute image measurements of fea-
tures matched with an on-board map through an Extended
Kalman filter. The matching step is based on the geomet-
rical distribution of landmarks, is memory-efficient and
works under illumination changes. The main feature of
our filter is to conduct image processing without planar
approximation. This is in contrast with most studies in
the field [12, 14], which use planar homography warp-
ing in the matching step. Because it is compatible with
rugged terrains, our approach allows to increase the du-
ration of the vision-aided navigation phase towards chal-
lenging landing sites, hence reducing the final navigation
error and enhancing mission return. Preliminary Monte
Carlo validation show promising results on a lunar ap-
proach phase scenario. Low-altitude global navigation
could also be enabled using our approach for planetary
aerial mobility vehicles, like airships.



The next step is to work further the understanding the
events provoking divergence in 6.5 percents of the runs
so as to decrease this figure and make the over all per-
formance better. Implementing a method including fil-
ter state uncertainty into the voting process for putative
matching to decrease the rate of outliers is to be in-
vestigated. Testing should be proceeded to on a com-
plete orbit-to-touchdown lunar landing simulator. This
should enhance scale problems in the extraction of im-
age features between the online and orbital images which
were noticed already on the low-altitude trajectory tested.
If confirmed, other corner extractors taking scale infor-
mation into account such as the Harris-Laplace features
should be tested and their repeatability rates compared to
more specific features like craters for instance. The ro-
bustness to illumination changes should be also be inves-
tigated for more various conditions. It is finally desired
to compare the performance of the EKF with that of the
UKF and PF to handle non-linearities.
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